Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2005 science breakthrough: Revising Earth’s early history

23.12.2005


During Earth formation, decay of short-lived radioactive isotopes and surface bombardment from large bodies heated Earth’s mantle and created a deep magma ocean


Earth’s future was determined at birth. Using refined techniques to study rocks, researchers at the Carnegie Institution’s Department of Terrestrial Magnetism (DTM) found that Earth’s mantle--the layer between the core and the crust--separated into chemically distinct layers faster and earlier than previously believed. The layering happened within 30 million years of the solar system’s formation, instead of occurring gradually over more than 4 billion years, as the standard model suggests. The new work was recognized by Science magazine, in its December 23 issue, as one of the science breakthroughs for 2005.

Carnegie scientists Maud Boyet and Richard Carlson analyzed isotopes--atoms of an element with the same number of protons, but a different number of neutrons--of elements in rock samples for their work. As Carlson explains, "Isotopes exist naturally in different proportions and are used to determine conditions under which rock forms. Radioactive isotopes are particularly handy because they decay at a predictable rate and can reveal a sample’s age and when its chemical composition was established."

In the standard model of the geochemical evolution of the Earth, the Earth’s mantle has been evolving gradually over Earth’s 4.567-billion-year history primarily through the formation of the chemically distinct continental crust. Shortly after solid material began condensing from the hot gas of the cooling early solar system, the object that would become Earth grew by the collision and accretion of smaller rocky bodies. The chemical composition of these building blocks is preserved today in primitive meteorites called chondrites.



In the 1980s, scientists analyzed the ratio of isotopes of the rare earth element neodymium in chondrites and various terrestrial rocks collected at or near the Earth’s surface and found that the samples shared a common composition. Researchers believed that this ratio remained constant from the beginning of Earth formation. Using new-generation equipment, Boyet and Carlson found, surprisingly, that the terrestrial samples did not have the same ratio as the meteorites. Compared to chondrites, all terrestrial rocks measured have an excess of the mass 142 isotope of neodymium (142Nd), which is the decay product of a now-extinct radioactive isotope of samarium of mass 146 (146Sm) that was present at the birth of the solar system but decayed away shortly thereafter. The excess in 142Nd allowed the researchers to determine when the composition of the Earth diverged from that of the meteorites--within the first 30 million years after solar system formation, which is less than 1% of the age of our planet.

To explain the excess of 142Nd found in the terrestrial samples, the Carnegie scientists believe that the Earth was largely molten during its formation and that rapid crystallization of Earth’s early magma ocean caused the mantle to separate into chemically distinct layers, one containing a high ratio of Sm to Nd similar to that observed today in the mantle source of the volcanism along ocean ridges. The complementary reservoir, with low 142Nd abundance, has never been sampled at the surface and hence could now be deeply buried in the so-called D" layer at the very base of the mantle, above the core. This "missing" layer should be rich in the elements uranium, thorium, and potassium, whose long-lived radioactive decay heats Earth’s interior and causes our planet to remain geologically active. This hot layer above the core could help to keep the outer core molten so that circulation of liquid iron can produce Earth’s magnetic field, and it could instigate the hot plumes of upwelling mantle material that give rise to volcanically active islands, such as Hawaii.

Measurements by Boyet and Carlson also show that lunar rocks have the same abundance of 142Nd as the terrestrial samples, a finding that adds to the evidence that the Moon formed from the Earth. Since Mars also experienced early melting, as indicated by the chemical and isotopic composition of Martian meteorites, the new results now link the early evolution of Earth, Moon, and Mars and highlights the importance of early events in determining the chemical characteristics of the terrestrial planets.

"The work of Boyet and Carlson, when added to what has already been determined for the Moon and Mars, shows that the earliest days of the inner planets were violent times in solar system history," adds DTM director Sean Solomon. "Theoretical work by Carnegie scientist George Wetherill had pointed to this result, but now we have a clear chemical signature of this episode of Earth history."

Dr. Richard Carlson | EurekAlert!
Further information:
http://www.dtm.ciw.edu
http://www.CarnegieInstitution.org

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>