Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan reports first coring operations of CHIKYU

19.12.2005


The deep-sea scientific drilling vessel CHIKYU, owned by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and provided to the Integrated Ocean Drilling Program--jointly funded by Japan and the United States--has recently undergone successful testing operations, according to JAMSTEC-CDEX Director-General Asahiko Taira. Successful performance results are now available for the Blow Out Preventer (BOP) handling System Integration Test (SIT). Dr. Taira also reported successful piston-coring operations (part of the BOP-SIT), including recovery of two piston cores, i.e. cylindrical sediment samples taken from strata using a hydraulically actuated piston corer (Hydraulic Piston Coring System: HPCS). HPCS is used for sampling mud and sand from geological layers beneath the seafloor.



JAMSTEC conducted ship-steering training using the Dynamic Positioning System (DPS), as well as training in deploying and retrieving transponder signals, the acoustic locator off Nagasaki, Suruga Bay, and Boso Peninsula. During two test periods (Oct. 10–Dec. 1, off Shimokita Peninsula, and Dec. 4–Dec. 12, off Suruga Bay), the following CHIKYU systems/equipment were tested to confirm performance:

  • A) Off Shimokita Peninsula
  • 1) Drilling equipment performance test (drillpipe handling test)
  • 2) Mud system performance test (Circulation test and mixing test for high-density drilling mud)
  • 3) Dynamic Positioning System (DPS) test
  • 4) Piston coring by HPCS
  • B) Off Suruga Bay 5) BOP handling test

"These results confirm the basic performance of the drilling equipment and that the CHIKYU’s systems meet our expectations and are ready for upcoming, full-scale drilling operations," declared Dr. Taira. "Testing enabled us to acquire new information to facilitate CHIKYU’s safe and smooth operation. Our plan is to move CHIKYU to Sukumo Bay in Kochi as a base port to conduct more tests, especially ship positioning."

The piston coring test was performed 60 kilometers to the east off Shimokita Peninsula from Nov. 22-28. Two piston cores, 50 meters and 70 meters long, respectively, were retrieved by HPCS from 1,200-meter water depths. JAMSTEC also conducted performance tests for research and core analysis systems onboard, using the recovered cores. To confirm the strength of strata for BOP supporting/landing during upcoming riser drilling in FY2006, measurements were made of whole 50-meter core share strength. As a result, said Taira, "We are confident that the strength of strata around this area is sufficient for BOP landing and successful riser-drilling."


Judging from the recovered cores, Taira identified the following features in the surface sediments at the drill site:

1) Sediment samples (50 meters, 70 meters beneath the seafloor) are olive-grey, diatomecious mud with frequently observed ash layers. The origin of sediments is mud and sand by river discharge, ocean plankton and volcano eruption.
2) This kind of mud, containing many plankton bodies, is distributed widely not only in the sea near Japan, but also along the land’s edge. This mud is meant to absorb the organic material (carbon), and it has been thought that it controls the CO2 density levels in the atmosphere and ocean, and relates to climate changes as well.
3) There is a possibility that the palaeoclimatic changes of Tohoku district during the last 20,000 to 30,000 years would be revealed by analysis of this piston cores.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>