Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan reports first coring operations of CHIKYU

19.12.2005


The deep-sea scientific drilling vessel CHIKYU, owned by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and provided to the Integrated Ocean Drilling Program--jointly funded by Japan and the United States--has recently undergone successful testing operations, according to JAMSTEC-CDEX Director-General Asahiko Taira. Successful performance results are now available for the Blow Out Preventer (BOP) handling System Integration Test (SIT). Dr. Taira also reported successful piston-coring operations (part of the BOP-SIT), including recovery of two piston cores, i.e. cylindrical sediment samples taken from strata using a hydraulically actuated piston corer (Hydraulic Piston Coring System: HPCS). HPCS is used for sampling mud and sand from geological layers beneath the seafloor.



JAMSTEC conducted ship-steering training using the Dynamic Positioning System (DPS), as well as training in deploying and retrieving transponder signals, the acoustic locator off Nagasaki, Suruga Bay, and Boso Peninsula. During two test periods (Oct. 10–Dec. 1, off Shimokita Peninsula, and Dec. 4–Dec. 12, off Suruga Bay), the following CHIKYU systems/equipment were tested to confirm performance:

  • A) Off Shimokita Peninsula
  • 1) Drilling equipment performance test (drillpipe handling test)
  • 2) Mud system performance test (Circulation test and mixing test for high-density drilling mud)
  • 3) Dynamic Positioning System (DPS) test
  • 4) Piston coring by HPCS
  • B) Off Suruga Bay 5) BOP handling test

"These results confirm the basic performance of the drilling equipment and that the CHIKYU’s systems meet our expectations and are ready for upcoming, full-scale drilling operations," declared Dr. Taira. "Testing enabled us to acquire new information to facilitate CHIKYU’s safe and smooth operation. Our plan is to move CHIKYU to Sukumo Bay in Kochi as a base port to conduct more tests, especially ship positioning."

The piston coring test was performed 60 kilometers to the east off Shimokita Peninsula from Nov. 22-28. Two piston cores, 50 meters and 70 meters long, respectively, were retrieved by HPCS from 1,200-meter water depths. JAMSTEC also conducted performance tests for research and core analysis systems onboard, using the recovered cores. To confirm the strength of strata for BOP supporting/landing during upcoming riser drilling in FY2006, measurements were made of whole 50-meter core share strength. As a result, said Taira, "We are confident that the strength of strata around this area is sufficient for BOP landing and successful riser-drilling."


Judging from the recovered cores, Taira identified the following features in the surface sediments at the drill site:

1) Sediment samples (50 meters, 70 meters beneath the seafloor) are olive-grey, diatomecious mud with frequently observed ash layers. The origin of sediments is mud and sand by river discharge, ocean plankton and volcano eruption.
2) This kind of mud, containing many plankton bodies, is distributed widely not only in the sea near Japan, but also along the land’s edge. This mud is meant to absorb the organic material (carbon), and it has been thought that it controls the CO2 density levels in the atmosphere and ocean, and relates to climate changes as well.
3) There is a possibility that the palaeoclimatic changes of Tohoku district during the last 20,000 to 30,000 years would be revealed by analysis of this piston cores.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>