Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Japan reports first coring operations of CHIKYU


The deep-sea scientific drilling vessel CHIKYU, owned by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and provided to the Integrated Ocean Drilling Program--jointly funded by Japan and the United States--has recently undergone successful testing operations, according to JAMSTEC-CDEX Director-General Asahiko Taira. Successful performance results are now available for the Blow Out Preventer (BOP) handling System Integration Test (SIT). Dr. Taira also reported successful piston-coring operations (part of the BOP-SIT), including recovery of two piston cores, i.e. cylindrical sediment samples taken from strata using a hydraulically actuated piston corer (Hydraulic Piston Coring System: HPCS). HPCS is used for sampling mud and sand from geological layers beneath the seafloor.

JAMSTEC conducted ship-steering training using the Dynamic Positioning System (DPS), as well as training in deploying and retrieving transponder signals, the acoustic locator off Nagasaki, Suruga Bay, and Boso Peninsula. During two test periods (Oct. 10–Dec. 1, off Shimokita Peninsula, and Dec. 4–Dec. 12, off Suruga Bay), the following CHIKYU systems/equipment were tested to confirm performance:

  • A) Off Shimokita Peninsula
  • 1) Drilling equipment performance test (drillpipe handling test)
  • 2) Mud system performance test (Circulation test and mixing test for high-density drilling mud)
  • 3) Dynamic Positioning System (DPS) test
  • 4) Piston coring by HPCS
  • B) Off Suruga Bay 5) BOP handling test

"These results confirm the basic performance of the drilling equipment and that the CHIKYU’s systems meet our expectations and are ready for upcoming, full-scale drilling operations," declared Dr. Taira. "Testing enabled us to acquire new information to facilitate CHIKYU’s safe and smooth operation. Our plan is to move CHIKYU to Sukumo Bay in Kochi as a base port to conduct more tests, especially ship positioning."

The piston coring test was performed 60 kilometers to the east off Shimokita Peninsula from Nov. 22-28. Two piston cores, 50 meters and 70 meters long, respectively, were retrieved by HPCS from 1,200-meter water depths. JAMSTEC also conducted performance tests for research and core analysis systems onboard, using the recovered cores. To confirm the strength of strata for BOP supporting/landing during upcoming riser drilling in FY2006, measurements were made of whole 50-meter core share strength. As a result, said Taira, "We are confident that the strength of strata around this area is sufficient for BOP landing and successful riser-drilling."

Judging from the recovered cores, Taira identified the following features in the surface sediments at the drill site:

1) Sediment samples (50 meters, 70 meters beneath the seafloor) are olive-grey, diatomecious mud with frequently observed ash layers. The origin of sediments is mud and sand by river discharge, ocean plankton and volcano eruption.
2) This kind of mud, containing many plankton bodies, is distributed widely not only in the sea near Japan, but also along the land’s edge. This mud is meant to absorb the organic material (carbon), and it has been thought that it controls the CO2 density levels in the atmosphere and ocean, and relates to climate changes as well.
3) There is a possibility that the palaeoclimatic changes of Tohoku district during the last 20,000 to 30,000 years would be revealed by analysis of this piston cores.

Nancy Light | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>