Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Models of Weather Pattern

12.12.2005


For a mathematician, Joseph Biello spends a lot of time thinking about the weather. But the UC Davis assistant professor isn’t looking out the office window. He is using mathematical theory to build a model of the Madden-Julian Oscillation, a tropical weather pattern that influences drought and rainfall in the western U.S.



The Madden-Julian Oscillation was discovered in 1972 when researchers looked closely at meteorological data. It lasts 30 to 60 days and appears as clusters of tropical thunderstorms over the Indian Ocean before sweeping eastward into the Pacific, where it dissipates.

Measured in weeks, the Madden-Julian Oscillation lies in a gray area between short-term weather forecasts and long-term climate studies, said Bryan Weare, a professor of meteorology at UC Davis who also studies the phenomenon. A better understanding of the weather pattern would help with medium-range weather and climate forecasting.


Weare is trying to understand, for example, the conditions that cause the oscillation to begin over the Indian Ocean. Once the oscillation is under way, you can use it to make predictions about weather phenomena over a month or so, he said. But how it occurs in the first place is not well understood. So far, his work supports theories that link surface moisture over the ocean to thunderstorms, he said.

The phenomenon has subtle effects on weather in the U.S. There is a link between days of very intense rainfall on the West Coast and rainfall associated with a Madden-Julian Oscillation near the equator, Weare said. On the other hand, Biello said that there also seems to be a link between a strong oscillation and a general drought on the West Coast.

So far this winter, the Madden-Julian Oscillation appears to be weak, according to data from the National Weather Service. But the oscillation can occur several times over the winter months.

To understand the weather, you have to look at processes at vastly different scales of space and time, Biello said.

"To understand the Earth, you have to understand raindrops," he said. Biello’s specialty is to build mathematical models that incorporate these different scales. Often, weather and climate models divide the planet into a grid of squares, kilometers across, and look at how those squares interact. But that means making assumptions about what is going on within the squares, Biello said.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>