Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement of Earth’s North Magnetic Pole Accelerating Rapidly

09.12.2005


After some 400 years of relative stability, Earth’s North Magnetic Pole has moved nearly 1,100 kilometers out into the Arctic Ocean during the last century and at its present rate could move from northern Canada to Siberia within the next half-century.



If that happens, Alaska may be in danger of losing one of its most stunning natural phenomena - the Northern Lights.

But the surprisingly rapid movement of the magnetic pole doesn’t necessarily mean that our planet is going through a large-scale change that would result in the reversal of the Earth’s magnetic field, Oregon State University paleomagnetist Joseph Stoner reported today at the annual meeting of the American Geophysical Union in San Francisco, Calif.


"This may be part of a normal oscillation and it will eventually migrate back toward Canada," said Stoner, an assistant professor in OSU’s College of Oceanic and Atmospheric Sciences. "There is a lot of variability in its movement."

Calculations of the North Magnetic Pole’s location from historical records goes back only about 400 years, while polar observations trace back to John Ross in 1838 at the west coast of Boothia Peninsula. To track its history beyond that, scientists have to dig into the Earth to look for clues.

Stoner and his colleagues have examined the sediment record from several Arctic lakes. These sediments - magnetic particles called magnetite - record the Earth’s magnetic field at the time they were deposited. Using carbon dating and other technologies - including layer counting - the scientists can determine approximately when the sediments were deposited and track changes in the magnetic field.

The Earth last went through a magnetic reversal some 780,000 years ago. These episodic reversals, in which south becomes north and vice versa, take thousands of years and are the result of complex changes in the Earth’s outer core. Liquid iron within the core generates the magnetic field that blankets the planet.

Because of that field, a compass reading of north in Oregon will be approximately 17 degrees east from "true geographic north." In Florida, farther away and more in line with the poles, the declination is only 4-5 degrees west.

The Northern Lights, which are triggered by the sun and fixed in position by the magnetic field, drift with the movement of the North Magnetic Pole and may soon be visible in more southerly parts of Siberia and Europe - and less so in northern Canada and Alaska.

In their research, funded by the National Science Foundation, Stoner and his colleagues took core samples from several lakes, but focused on Sawtooth Lake and Murray Lake on Ellesmere Island in the Canadian Arctic. These lakes, about 40 to 80 meters deep, are covered by 2-3 meters of ice. The researchers drill through the ice, extend their corer down through the water, and retrieve sediment cores about five meters deep from the bottom of the lakes.

The 5-meter core samples provide sediments deposited up to about 5,000 years ago. Below that is bedrock, scoured clean by ice about 7,000 to 8,000 years ago.

"The conditions there give us nice age control," Stoner said. "One of the problems with tracking the movement of the North Magnetic Pole has been tying the changes in the magnetic field to time. There just hasn’t been very good time constraint. But these sediments provide a reliable and reasonably tight timeline, having consistently been laid down at the rate of about one millimeter a year in annual layers.

"We’re trying to get the chronology down to a decadal scale or better."

What their research has told Stoner and his colleagues is that the North Magnetic Pole has moved all over the place over the last few thousand years. In general, it moves back and forth between northern Canada and Siberia. But it also can veer sideways.

"There is a lot of variability in the polar motion," Stoner pointed out, "but it isn’t something that occurs often. There appears to be a ’jerk’ of the magnetic field that takes place every 500 years or so. The bottom line is that geomagnetic changes can be a lot more abrupt than we ever thought."

Shifts in the North Magnetic Pole are of interest beyond the scientific community. Radiation influx is associated with the magnetic field, and charged particles streaming down through the atmosphere can affect airplane flights and telecommunications.

About the OSU College of Oceanic and Atmospheric Sciences: COAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges.

Joe Stoner | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>