Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes to land cover may enhance global warming in Amazon, reduce it in midlatitudes

09.12.2005


New simulations of 21st-century climate show that human-produced changes in land cover could produce additional warming in the Amazon region comparable to that caused by greenhouse gases, while counteracting greenhouse warming by 25% to 50% in some midlatitude areas. The simulations from the National Center for Atmospheric Research (NCAR) show the importance of including land cover in computer-model depictions of global change. The results will be published in the December 9 issue of Science.



Lead author Johannes Feddema (University of Kansas) carried out the modeling work with six coauthors from NCAR while on sabbatical at the center. The team linked NCAR’s Land Surface Model with the global-scale Parallel Climate Model, developed by scientists at NCAR and the U.S. Department of Energy under DOE sponsorship. This marks the first time a simulation of 21st-century warming includes not only interactive ocean and atmosphere components but also changes in land cover caused by agriculture, deforestation, and other human activities.

"The choices humans make about future land use could have a significant impact on regional and seasonal climates," says Feddema.


Taken together, the impacts of greenhouse gases around the globe should far outweigh the regional effects of land-cover change, according to Feddema. However, the regions with extensive agriculture and deforestation also tend to be highly populated, so the effects of land-cover change are often focused where people live.

"Compared to global warming, land use is a relatively small influence. However, there are regions where it’s really important," he says.

To bracket a range of possibilities, the group examined two contrasting scenarios for greenhouse emissions and land cover put forth by the Intergovernmental Panel on Climate Change. The more pessimistic scenario assumed that emissions will increase steadily, while the more optimistic scenario assumes rapid gains in energy efficiency.

The results for the first scenario show that deforestation adds 2°C (3.6°F) or more to surface temperature across the Amazon by 2100. Cooling occurs in the nearby Pacific and Atlantic waters with a weakening of the large-scale Hadley circulation that drives tropical and subtropical climate. In turn, moisture penetrates further north and produces a cooling, moistening influence across the U.S. Southwest during that region’s summer monsoon.

While deforestation acts to warm the tropics by replacing forests with less productive pasture, converting midlatitude forests and grasses to cropland tends to act as a cooling influence, because the crops tend to reflect more sunlight and release more moisture into the air. Feddema and colleagues found that expanded agriculture tends to counteract global warming by as much as 50% across parts of North America, Europe, and Asia. In Canada and Russia, boreal forests add to regional warming as they spread north over time.

Although the two IPCC scenarios studied agree on the impacts of land use in some regions, they produce contrasting results in others. The next step for Feddema and colleagues is to utilize the NCAR-based Community Climate System Model, which will provide higher-resolution results. They also hope to incorporate the effects of urban areas on regional climate.

"Our results suggest that more research efforts should be devoted to producing viable scenarios of land-cover change in the future," says coauthor Linda Mearns, director of the NCAR Institute for the Study of Society and Environment. "We very much hope that other climate modeling centers perform experiments similar to ours."

"The purpose of our project is to include human processes more directly in global climate models," adds Feddema. "This is the first step."

The simulations were supported by the DOE, the National Science Foundation, and the University of Kansas. NSF is NCAR’s primary sponsor. Opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of NSF.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>