Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes to land cover may enhance global warming in Amazon, reduce it in midlatitudes

09.12.2005


New simulations of 21st-century climate show that human-produced changes in land cover could produce additional warming in the Amazon region comparable to that caused by greenhouse gases, while counteracting greenhouse warming by 25% to 50% in some midlatitude areas. The simulations from the National Center for Atmospheric Research (NCAR) show the importance of including land cover in computer-model depictions of global change. The results will be published in the December 9 issue of Science.



Lead author Johannes Feddema (University of Kansas) carried out the modeling work with six coauthors from NCAR while on sabbatical at the center. The team linked NCAR’s Land Surface Model with the global-scale Parallel Climate Model, developed by scientists at NCAR and the U.S. Department of Energy under DOE sponsorship. This marks the first time a simulation of 21st-century warming includes not only interactive ocean and atmosphere components but also changes in land cover caused by agriculture, deforestation, and other human activities.

"The choices humans make about future land use could have a significant impact on regional and seasonal climates," says Feddema.


Taken together, the impacts of greenhouse gases around the globe should far outweigh the regional effects of land-cover change, according to Feddema. However, the regions with extensive agriculture and deforestation also tend to be highly populated, so the effects of land-cover change are often focused where people live.

"Compared to global warming, land use is a relatively small influence. However, there are regions where it’s really important," he says.

To bracket a range of possibilities, the group examined two contrasting scenarios for greenhouse emissions and land cover put forth by the Intergovernmental Panel on Climate Change. The more pessimistic scenario assumed that emissions will increase steadily, while the more optimistic scenario assumes rapid gains in energy efficiency.

The results for the first scenario show that deforestation adds 2°C (3.6°F) or more to surface temperature across the Amazon by 2100. Cooling occurs in the nearby Pacific and Atlantic waters with a weakening of the large-scale Hadley circulation that drives tropical and subtropical climate. In turn, moisture penetrates further north and produces a cooling, moistening influence across the U.S. Southwest during that region’s summer monsoon.

While deforestation acts to warm the tropics by replacing forests with less productive pasture, converting midlatitude forests and grasses to cropland tends to act as a cooling influence, because the crops tend to reflect more sunlight and release more moisture into the air. Feddema and colleagues found that expanded agriculture tends to counteract global warming by as much as 50% across parts of North America, Europe, and Asia. In Canada and Russia, boreal forests add to regional warming as they spread north over time.

Although the two IPCC scenarios studied agree on the impacts of land use in some regions, they produce contrasting results in others. The next step for Feddema and colleagues is to utilize the NCAR-based Community Climate System Model, which will provide higher-resolution results. They also hope to incorporate the effects of urban areas on regional climate.

"Our results suggest that more research efforts should be devoted to producing viable scenarios of land-cover change in the future," says coauthor Linda Mearns, director of the NCAR Institute for the Study of Society and Environment. "We very much hope that other climate modeling centers perform experiments similar to ours."

"The purpose of our project is to include human processes more directly in global climate models," adds Feddema. "This is the first step."

The simulations were supported by the DOE, the National Science Foundation, and the University of Kansas. NSF is NCAR’s primary sponsor. Opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of NSF.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>