Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountainous plateau creates ozone ’halo’ around Tibet

09.12.2005


Levels of ozone at extreme altitudes may add to the medical dangers faced by mountaineers



Not only is the air around the world’s highest mountains thin, but it’s thick with ozone, says a new study from University of Toronto researchers.

In fact, say the scientists, the ring of ozone that exists around the Tibetan plateau, which rises 4,000 metres above sea level and includes such famous peaks as Mount Everest and K2, is as concentrated as the ozone found in heavily polluted cities -- and may put climbers at risk. The findings are published in the journal Geophysical Research Letters.


"Around the circumference of Tibet, there’s a halo of very high levels of ozone," said Professor G.W. Kent Moore, interim chair of the Department of Chemical and Physical Sciences at the University of Toronto at Mississauga and lead author of the study.

Study co-author John Semple, an associate professor of surgery and an avid mountaineer, was initially interested in how weather changes at high altitude can have a medical impact on climbers. Along with Moore, he examined earlier data and found several studies that alluded to higher ozone levels. Ozone is a highly reactive gas that can cause coughing, chest pain and damage to the lining of the lungs.

"In meteorology, it’s a fairly well known phenomenon that when you get storms, quite often the tropopause -- which is the flexible boundary between the stratosphere and the troposphere -- descends," Moore says. "Its usual height might be 12 kilometres, and it might decend to nine or 10 kilometres. If you’re on Mount Everest, you’re eight or nine kilometres up. It might be that you’re sometimes in the stratosphere."

The stratosphere is where most of the ozone that protects the globe from the sun’s ultraviolet rays can be found;for this reason stratospheric ozone is often referred to as "good" as opposed to the ground-level ozone from pollution which is referred to as "bad". When the tropopause decends, the ozone descends with it. "Most people think about the mountains as one of the areas you can go to get clean air," said Semple, head of the Division of Plastic Surgery at Sunnybrook and Women’s College Health Sciences Centre, a teaching hospital affiliated with U of T. "It may be that when you’re up high in the mountains that the good ozone actually becomes bad ozone--because no matter where ozone comes from you don’t want to breathe it."

Semple climbed the Yeli Pass in Bhutan in the autumn of 2004 while collecting data on weather and atmospheric changes. He measured the levels of ozone between 3,000 and 5,000 metres above sea level and discovered that instead of falling (as pollutant levels normally do with altitude), ozone levels were rising.

Moore examined satellite measurements of the ozone levels above the plateau during October and November of the years 1997 to 2004. He found that while ozone levels were low over the centre of the Tibetan plateau, high levels of the gas could be found around the periphery of the plateau -- forming a halo.

Moore believes that the halo is the result of a pattern in fluid dynamics known as a Taylor column -- a phenomenon that is normally seen underwater. When water passes around a submerged obstacle, like a seamount, the flow of water forks around the obstacle. This forked pattern also continues above the top of the obstruction to the surface of the water, leaving a column of still water above the object.

Scientists treat air as a fluid, and Moore says that the Tibetan plateau acts like an obstacle, creating a column of stagnant air above the mountainous region. Because the plateau’s influence extends into the upper troposphere and the lower stratosphere -- where the Earth’s layer of UV-protectant ozone resides, Moore suggests that the plateau forms a halo of ozone-rich air in the upper-troposphere around Tibet. "As far as we know, this is the first one that’s ever been found in the atmosphere," he says.

The ozone concentrations measured in this study are still considered quite low in relation to levels that are known to cause significant changes in lung function at sea level. The presence of such higher levels of ozone at extreme altitudes may add to the medical dangers faced by mountaineers. "We can only imagine that hypoxia [lack of oxygen] and the rate of hyperventilation that people have at extreme altitudes would actually make the effects of ozone worse," Semple says. "You probably need less ozone to cause a significant change in the lungs."

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>