Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flight Campaign in Darwin Brought to a Successful Close

09.12.2005


For the last time yesterday, the Russian high-altitude research aircraft Geophysica and the German Aerospace Centre’s (DLR) Falcon set off for tropical thunderclouds in Darwin (Australia). Over the last four weeks, the research aircraft undertook a total of nine joint measurement flights in the tropical atmosphere at the interface between the troposphere and stratosphere. Within the framework of the SCOUT-03 Project, they collected data which will be incorporated into the discussion on climate change, for instance at world climate conferences. The aircraft measurement campaign is part of the integrated EU project SCOUT-03 and was coordinated by Research Centre Jülich together with colleagues from the ETH Zürich (Swiss Federal Institute of Technology), Cambridge University and the DLR.

SCOUT-03 is analysing how the stratospheric ozone layer will change over the coming decades under conditions of global change. Scientists will thus be able to provide findings that will enable global assessments of ozone depletion and climate change to be made and incorporated into the Kyoto Protocol, for example. The Kyoto Protocol is currently being discussed at the World Climate Conference in the Canadian city of Montreal.

The measurement campaign in Australia focused on thunderclouds, which form almost daily at this time of year at altitudes of up to 20 kilometres at the "top end" of Australia. The tropics are of particular importance because this is where the exchange of air masses occurs between the lower (troposphere) and upper atmosphere (stratosphere). They are therefore the source region for many trace gases, such as chlorofluorocarbons, nitrogen oxides and water, which have a global influence on the ozone chemistry of the stratosphere. The gigantic thunderclouds on Darwin’s doorstep transport these air masses directly into the stratosphere within a short period of time.



In order to monitor the transport of tropospheric air masses up into the stratosphere, the pilots flew the research aircraft over or near to such thunderclouds five times. On 30 November, Geophysica and Falcon were even sent up into the atmosphere twice, with the additional support of two other research aircraft from the British project ACTIVE. "It is in itself a remarkable feat to have four research aircraft, packed full with measuring instruments, operate at various altitudes and different development stages of these thunderclouds within a specific timeframe", explained Dr. Cornelius Schiller, coordinator of the SCOUT-03 aircraft campaign and physicist at Research Centre Jülich.
"This requires well-coordinated teamwork between the meteorologists, who deliver the weather forecasts to us, the teams of researchers, who operate the instruments, and finally the pilots, who appraise the measurement situation on site and accurately navigate the aircraft towards the object of scientific desire", said Schiller of the difficulties involved. On top of this, changing weather conditions, for example, often require improvisation and spontaneous decisions. During further flights, the scientists investigated the large-scale dispersion of trace gasses and cirrus clouds.

"A first look at the data shows that the storms do indeed effectively transport water, nitrogen oxides and other trace gasses into the tropical tropopause region", reported Schiller on the initial results. "They generate cirrus clouds at high altitudes, which were observed during most of the flights." In the lower and middle atmosphere, Jülich scientists measured extremely low concentrations of water. "A more accurate analysis of the large data volume and a more detailed evaluation of the results will still take several months", explained Prof. Martin Riese, Director at the Institute of Chemistry and Dynamics of the Geosphere at Research Centre Jülich. The first results will be discussed at an international SCOUT-03 conference at Research Centre Jülich from 20 – 24 March.

On Saturday, both aircraft will begin their return journey to Europe. They will cross the monsoon regions of Indonesia and Thailand, fly in the subtropics over India and Arabia and finally return to the mid-latitudes of Europe. Modern remote sensing methods play a central role in these global measurement flights. "The infrared telescope CRISTA-NF, recently modified at Jülich and the University of Wuppertal, will also measure the distribution according to altitude of a multitude of atmospheric trace gasses with a high spatial resolution during the return flight", said Dr. Fred Stroh of Research Centre Jülich.

Peter Schäfer | alfa
Further information:
http://www.fz-juelich.de/scout

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>