Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models show growing more forests in temperate regions could contribute to global warming

08.12.2005


Planting trees across the United States and Europe to absorb some of the carbon dioxide emitted by the burning of fossil fuels may just outweigh the positive effects of sequestering that CO².


New climate modeling research from LLNL and the Carnegie Institution shows that northern temperate forests (top) may contribute to global warming, while tropical forests (bottom) can help keep global temperatures cool.


Panel a: Direct warming associated with global forest cover. (These are results from a forest covered world minus the results for bare ground). Forests produce over 10°C (18°F) of warming in parts of the northern hemisphere due primarily to increased absorption of solar radiation. Forests produce several degrees of cooling in tropical areas, primarily due to increased evapotranspiration (evaporation).

Panel b:Direct warming associated with forest cover between between 20°N and 50°N. (These are results from actual vegetation with added forests in the mid-latitudes minus the results for bare ground.) Mid-latitude forests can produce warming locally of up to 6°C (10°F).

Panel c: Increase in fractional absorption of solar radiation at the ground for forests relative to bare ground.



New climate modeling research from LLNL and the Carnegie Institution shows that northern temperate forests (top) may contribute to global warming, while tropical forests (bottom) can help keep global temperatures cool. (Click here to download a high-resolution image.)
In theory, growing a forest may sound like a good idea to fight global warming, but in temperate regions, such as the United States, those trees also would soak up sunlight, causing the earth’s surface to warm regionally by up to 8 degrees Fahrenheit.

Forests affect climate in three different ways: they absorb the greenhouse gas, carbon dioxide, and help to keep the planet cool; they evaporate water to the atmosphere, which also helps keep the planet cool; and they are dark and absorb a lot of sunlight, warming the Earth.



Using climate models, researchers from Lawrence Livermore National Laboratory and the Carnegie Institution Department of Global Ecology have found that forests in the mid-latitude regions of the Earth present a more complicated picture. Trees in these areas tend to warm the Earth in the long run.

The darkness of these forests absorbs abundant sunlight, warming the land. While the darkness of the forest lasts forever, the effect of the forest sequestering carbon dioxide slows down over time as the atmosphere exchanges CO² with the ocean.

The conclusion: Planting a forest in the United States could cool the Earth for a few decades, but would lead to planetary warming in the long term. These are the results of a study that will be presented at 8:30 a.m. Wednesday, Dec. 7, at the American Geophysical Union Fall Meeting in San Francisco.

“On time scales longer than a few centuries, the net effect will actually be warming in these regions,” said Govindasamy Bala of the Livermore team. “We thought planting trees across the northern hemisphere would help curb global warming by the CO² absorption but what we found was a different story.”

The authors discovered that a global replacement of current vegetation by trees would lead to a global warming of 2.4 degrees Fahrenheit. Global replacement with grassland led to cooling of about 0.7°F.

The researchers also found that planting trees between 30 and 50 degrees latitude worldwide saw the global mean surface air temperature increase by 0.7°F. Regional warming in North America and Eurasia was as high as 8°F. In earlier studies, planting trees in the boreal forest regions (found mostly in the upper half of the Northern Hemisphere) caused a warming of surface temperatures.

“Although it was previously known that trees could have an overall warming effect in the boreal forests (north of 50 degrees), this is the first study to show that temperate forests could lead to net global warming,” said Livermore’s Seran Gibbard, lead author of the study.

The story is different for the tropical forests. In tropical regions, forests help keep the Earth cool by not only absorbing carbon dioxide, but by evaporating plenty of water as well.

“Should we give carbon credit to the planting of forests? Probably not for countries in mid and high latitudes,” Bala said. “But the tropical forests present a win-win because they cool the planet by evaporative cooling and the uptake of carbon.”

Co-author Ken Caldeira of the Carnegie Institution warned that proposals to grow more forests to cool the planet should be greeted with caution.

“I like forests. They provide good habitats for plants and animals, and tropical forest are good for climate, so we should be particularly careful to preserve them,” he said. “But in terms of climate change, we should focus our efforts on things that can really make a difference, like energy efficiency and developing new sources of clean energy.”

The research, also authored by Thomas Phillips and Michael Wickett of Lawrence Livermore, will appear online in the Dec. 8 issue of the journal Geophysical Research Letters.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>