Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models show growing more forests in temperate regions could contribute to global warming

08.12.2005


Planting trees across the United States and Europe to absorb some of the carbon dioxide emitted by the burning of fossil fuels may just outweigh the positive effects of sequestering that CO².


New climate modeling research from LLNL and the Carnegie Institution shows that northern temperate forests (top) may contribute to global warming, while tropical forests (bottom) can help keep global temperatures cool.


Panel a: Direct warming associated with global forest cover. (These are results from a forest covered world minus the results for bare ground). Forests produce over 10°C (18°F) of warming in parts of the northern hemisphere due primarily to increased absorption of solar radiation. Forests produce several degrees of cooling in tropical areas, primarily due to increased evapotranspiration (evaporation).

Panel b:Direct warming associated with forest cover between between 20°N and 50°N. (These are results from actual vegetation with added forests in the mid-latitudes minus the results for bare ground.) Mid-latitude forests can produce warming locally of up to 6°C (10°F).

Panel c: Increase in fractional absorption of solar radiation at the ground for forests relative to bare ground.



New climate modeling research from LLNL and the Carnegie Institution shows that northern temperate forests (top) may contribute to global warming, while tropical forests (bottom) can help keep global temperatures cool. (Click here to download a high-resolution image.)
In theory, growing a forest may sound like a good idea to fight global warming, but in temperate regions, such as the United States, those trees also would soak up sunlight, causing the earth’s surface to warm regionally by up to 8 degrees Fahrenheit.

Forests affect climate in three different ways: they absorb the greenhouse gas, carbon dioxide, and help to keep the planet cool; they evaporate water to the atmosphere, which also helps keep the planet cool; and they are dark and absorb a lot of sunlight, warming the Earth.



Using climate models, researchers from Lawrence Livermore National Laboratory and the Carnegie Institution Department of Global Ecology have found that forests in the mid-latitude regions of the Earth present a more complicated picture. Trees in these areas tend to warm the Earth in the long run.

The darkness of these forests absorbs abundant sunlight, warming the land. While the darkness of the forest lasts forever, the effect of the forest sequestering carbon dioxide slows down over time as the atmosphere exchanges CO² with the ocean.

The conclusion: Planting a forest in the United States could cool the Earth for a few decades, but would lead to planetary warming in the long term. These are the results of a study that will be presented at 8:30 a.m. Wednesday, Dec. 7, at the American Geophysical Union Fall Meeting in San Francisco.

“On time scales longer than a few centuries, the net effect will actually be warming in these regions,” said Govindasamy Bala of the Livermore team. “We thought planting trees across the northern hemisphere would help curb global warming by the CO² absorption but what we found was a different story.”

The authors discovered that a global replacement of current vegetation by trees would lead to a global warming of 2.4 degrees Fahrenheit. Global replacement with grassland led to cooling of about 0.7°F.

The researchers also found that planting trees between 30 and 50 degrees latitude worldwide saw the global mean surface air temperature increase by 0.7°F. Regional warming in North America and Eurasia was as high as 8°F. In earlier studies, planting trees in the boreal forest regions (found mostly in the upper half of the Northern Hemisphere) caused a warming of surface temperatures.

“Although it was previously known that trees could have an overall warming effect in the boreal forests (north of 50 degrees), this is the first study to show that temperate forests could lead to net global warming,” said Livermore’s Seran Gibbard, lead author of the study.

The story is different for the tropical forests. In tropical regions, forests help keep the Earth cool by not only absorbing carbon dioxide, but by evaporating plenty of water as well.

“Should we give carbon credit to the planting of forests? Probably not for countries in mid and high latitudes,” Bala said. “But the tropical forests present a win-win because they cool the planet by evaporative cooling and the uptake of carbon.”

Co-author Ken Caldeira of the Carnegie Institution warned that proposals to grow more forests to cool the planet should be greeted with caution.

“I like forests. They provide good habitats for plants and animals, and tropical forest are good for climate, so we should be particularly careful to preserve them,” he said. “But in terms of climate change, we should focus our efforts on things that can really make a difference, like energy efficiency and developing new sources of clean energy.”

The research, also authored by Thomas Phillips and Michael Wickett of Lawrence Livermore, will appear online in the Dec. 8 issue of the journal Geophysical Research Letters.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>