Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming could free far more carbon from high Arctic soil than earlier thought

08.12.2005


Scientists studying the effects of carbon on climate warming are very likely underestimating, by a vast amount, how much soil carbon is available in the high Arctic to be released into the atmosphere, new University of Washington research shows.



A three-year study of soils in northwest Greenland found that a key previous study greatly underestimated the organic carbon stored in the soil. That’s because the earlier work generally looked only at the top 10 inches of soil, said Jennifer Horwath, a UW doctoral student in Earth and space sciences.

The earlier work, reported in 1992, estimated nearly 1 billion metric tons of organic carbon was contained in the soil of the polar semidesert, a 623,000-square-mile treeless Arctic region that is 20 percent to 80 percent covered by grasses, shrubs and other small plants. That research also estimated about 17 million metric tons of carbon was sequestered in the soil of the adjacent polar desert, a 525,000-square-mile area where only 10 percent or less of the landscape is plant covered.


Horwath dug substantially deeper, in some instances more than 3 feet down, and found significantly more carbon. She concluded that the polar semidesert contains more than 8.7 billion metric tons of carbon, and the polar desert contains more than 2.1 billion metric tons.

"In the polar semidesert, I found nearly nine times more carbon than was previously reported," she said. "In the polar desert, I’m finding 125 times more carbon."

Horwath will present her findings Tuesday in a poster exhibited during the American Geophysical Union’s fall meeting. The work is part of a broader study of carbon content of the water, plants and soil of the high Arctic region led by Jeffrey Welker, a biology professor at the University of Alaska Anchorage. The UW contingent is led by Ronald Sletten, a research associate professor of Earth and space sciences and coauthor of the poster.

Over three years, during thawing from late June to early August, Horwath excavated more than 75 pits on a peninsula near Thule Air Base in Greenland. The peninsula lies between the Greenland Ice Sheet and Baffin Bay. The pits, about three feet square, ranged in depth from 10 inches to nearly 39 inches, with their depth typically limited by bedrock, water table or permafrost. They contained a variety of soil types and features.

The findings are significant because the Arctic is showing greater effects from global climate change than anywhere else on Earth.

"We already know the Arctic climate is warming, and as it warms the depth of the permafrost is lowered. As that happens, more carbon becomes active and can be converted to carbon dioxide, one of the most abundant greenhouse gases in the atmosphere," Horwath said.

She noted that there is disagreement among scientists on just what the added warmth might mean for the high Arctic. Some say warmer climate will produce greater plant activity to absorb more carbon. Others say the overall carbon absorption is decreasing as the permafrost retreats.

No matter which group is right, she said, it is clearly important for those who run computer models that look at the processes and effects of climate change to have the most accurate numbers possible for the amount of carbon going into the atmosphere.

"The effects of climate change are really hard to predict, and it’s that much harder if you don’t have an accurate picture of what is actually happening now," Horwath said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>