Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate models need deeper roots, scientists say

07.12.2005


By soaking up moisture with their roots and later releasing it from their leaves, plants play an active role in regulating the climate. In fact, in vegetated ecosystems, plants are the primary channels that connect the soil to the atmosphere, with plant roots controlling the below-ground dynamics.



"Most climate models assume that roots are shallow -- usually within 6 feet of the surface -- and that only the soil moisture near the surface can significantly impact the climate," said Praveen Kumar, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. "Our research shows that it is not just the near surface, but also the deep reservoir of soil moisture that affect terrestrial heat and moisture processes in land-atmosphere interaction."

A better understanding of this interaction, Kumar said, could lead to more accurate climate models and better predictability.


Using a land surface model, Kumar and graduate student Geremew Amenu are assessing the effects of deep roots on soil moisture and temperature redistribution. Three sites with different vegetation, soil and climate characteristics are being studied: the Mogollon Rim in Arizona, the Edwards Plateau in Texas and the Southern Piedmont in Georgia. Soil depths of up to 30 feet are being investigated.

There are two primary mechanisms by which deep-layer moisture affects the soil surface, Kumar said. First, its temporal variability sets the lower boundary for the transfer of moisture and heat from the surface. And second, this temporal variability influences the uptake of moisture by the plant roots, resulting in the variability of the transpiration and therefore the entire energy balance.

"Our initial results suggest that this second mechanism is predominant, indicating that accurate specification of rooting depth in climate models will play a crucial role in improving predictability," Kumar said.

Through the process of transpiration, plants remove heat from their immediate environment. The evaporated moisture is carried elsewhere, eventually to fall as precipitation, releasing heat in the process. Through this ongoing energy cycle, plants can influence the climate.

"The variation of soil moisture in the deeper layers is a long term variation that we believe will be highly correlated with long term variations produced by climate models," Kumar said. "If we are right, we will have better predictability of climate over a longer period of time, to the extent that plants impact the climate system."

Kumar and Amenu will present the latest results of their modeling efforts, and the implications for climate modeling, at the American Geophysical Union meeting in San Francisco, Dec. 5-9. Their work was funded by the National Oceanic and Atmospheric Administration.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>