Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate models need deeper roots, scientists say

07.12.2005


By soaking up moisture with their roots and later releasing it from their leaves, plants play an active role in regulating the climate. In fact, in vegetated ecosystems, plants are the primary channels that connect the soil to the atmosphere, with plant roots controlling the below-ground dynamics.



"Most climate models assume that roots are shallow -- usually within 6 feet of the surface -- and that only the soil moisture near the surface can significantly impact the climate," said Praveen Kumar, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. "Our research shows that it is not just the near surface, but also the deep reservoir of soil moisture that affect terrestrial heat and moisture processes in land-atmosphere interaction."

A better understanding of this interaction, Kumar said, could lead to more accurate climate models and better predictability.


Using a land surface model, Kumar and graduate student Geremew Amenu are assessing the effects of deep roots on soil moisture and temperature redistribution. Three sites with different vegetation, soil and climate characteristics are being studied: the Mogollon Rim in Arizona, the Edwards Plateau in Texas and the Southern Piedmont in Georgia. Soil depths of up to 30 feet are being investigated.

There are two primary mechanisms by which deep-layer moisture affects the soil surface, Kumar said. First, its temporal variability sets the lower boundary for the transfer of moisture and heat from the surface. And second, this temporal variability influences the uptake of moisture by the plant roots, resulting in the variability of the transpiration and therefore the entire energy balance.

"Our initial results suggest that this second mechanism is predominant, indicating that accurate specification of rooting depth in climate models will play a crucial role in improving predictability," Kumar said.

Through the process of transpiration, plants remove heat from their immediate environment. The evaporated moisture is carried elsewhere, eventually to fall as precipitation, releasing heat in the process. Through this ongoing energy cycle, plants can influence the climate.

"The variation of soil moisture in the deeper layers is a long term variation that we believe will be highly correlated with long term variations produced by climate models," Kumar said. "If we are right, we will have better predictability of climate over a longer period of time, to the extent that plants impact the climate system."

Kumar and Amenu will present the latest results of their modeling efforts, and the implications for climate modeling, at the American Geophysical Union meeting in San Francisco, Dec. 5-9. Their work was funded by the National Oceanic and Atmospheric Administration.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>