Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate models need deeper roots, scientists say

07.12.2005


By soaking up moisture with their roots and later releasing it from their leaves, plants play an active role in regulating the climate. In fact, in vegetated ecosystems, plants are the primary channels that connect the soil to the atmosphere, with plant roots controlling the below-ground dynamics.



"Most climate models assume that roots are shallow -- usually within 6 feet of the surface -- and that only the soil moisture near the surface can significantly impact the climate," said Praveen Kumar, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. "Our research shows that it is not just the near surface, but also the deep reservoir of soil moisture that affect terrestrial heat and moisture processes in land-atmosphere interaction."

A better understanding of this interaction, Kumar said, could lead to more accurate climate models and better predictability.


Using a land surface model, Kumar and graduate student Geremew Amenu are assessing the effects of deep roots on soil moisture and temperature redistribution. Three sites with different vegetation, soil and climate characteristics are being studied: the Mogollon Rim in Arizona, the Edwards Plateau in Texas and the Southern Piedmont in Georgia. Soil depths of up to 30 feet are being investigated.

There are two primary mechanisms by which deep-layer moisture affects the soil surface, Kumar said. First, its temporal variability sets the lower boundary for the transfer of moisture and heat from the surface. And second, this temporal variability influences the uptake of moisture by the plant roots, resulting in the variability of the transpiration and therefore the entire energy balance.

"Our initial results suggest that this second mechanism is predominant, indicating that accurate specification of rooting depth in climate models will play a crucial role in improving predictability," Kumar said.

Through the process of transpiration, plants remove heat from their immediate environment. The evaporated moisture is carried elsewhere, eventually to fall as precipitation, releasing heat in the process. Through this ongoing energy cycle, plants can influence the climate.

"The variation of soil moisture in the deeper layers is a long term variation that we believe will be highly correlated with long term variations produced by climate models," Kumar said. "If we are right, we will have better predictability of climate over a longer period of time, to the extent that plants impact the climate system."

Kumar and Amenu will present the latest results of their modeling efforts, and the implications for climate modeling, at the American Geophysical Union meeting in San Francisco, Dec. 5-9. Their work was funded by the National Oceanic and Atmospheric Administration.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>