Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist measures role of science’s coolest player: The snow

06.12.2005


What would the Earth be like if one fine day all the snow melted away?



Obviously, it would be a much warmer place. But what’s interesting is how much warmer, says Stephen Vavrus, an associate scientist at the Center for Climatic Research at the University of Wisconsin-Madison. Working with computer-generated simulations, Vavrus found that in the absence of snow cover, global temperatures would likely spike by about eight-tenths of a degree Celsius. That increase represents as much as a third of the warming that climate change experts have predicted, should levels of heat-trapping greenhouse gases double.

"This was not just a what-if question," says Vavrus, whose work comes amidst mounting reports on the steady melt of Arctic ice. "I wanted to quantify the influence of global snow cover on the present-day climate because that has relevance for the type of climate changes we are expecting in the future." Vavrus will discuss his findings today during the fall meeting of the American Geophysical Union (Dec. 5-9, 2005).


Vavrus, a climate modeling specialist, digitally simulated a snow-free world, and measured the impact of missing snow cover on a range of climatic variables including soil temperatures, cloud cover, atmospheric circulation patterns and soil moisture levels.

Aside from his temperature-related projections, Vavrus also made the counterintuitive finding that in the absence of snow, total regions of permafrost-the permanently frozen soil of the cold north-are likely to expand in area. Without the insulating effect of snow, in other words, soils in colder regions of the world are in fact likely to get much colder. The surprising result has implications for the health of permafrost-associated ecosystems, and may influence decisions in the field of construction.

Already, permafrost changes have triggered structural problems in Alaskan buildings and roadways, says Vavrus, and "there’s every reason to think we’ll see even stronger effects in the future," he adds.

In forthcoming simulations, Vavrus plans to continue exploring the effects of both nearby and faraway snow cover on local climate conditions.

Stephen Vavrus | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>