Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake ’pulses’ could predict tsunami impact

05.12.2005


The magnitude 9.2 earthquake that triggered a devastating tsunami in the Indian Ocean in December of 2004 originated just off the coast of northern Sumatra, but an "energy pulse" – an area where slip on the fault was much greater – created the largest waves, some 100 miles from the epicenter. Seismologists have mapped these energy pulses for Sumatra and are trying to learn more about them to predict better when and where tsunamis may occur. They also hope these pulses will help them gain a more comprehensive understanding of the earthquake history of the Cascadia Subduction Zone off the Pacific Northwest Coast of the United States.



"Understanding the nature of these pulses could be critical because it could mean the difference between 15 minutes and 30 minutes in a tsunami warning," said Chris Goldfinger, an associate professor in the College of Oceanic and Atmospheric Sciences at Oregon State University and one of the leading experts in the world on the Cascadia fault zone.

"It seems that the largest Cascadia earthquakes have three pulses," Goldfinger added, "and core data show that more than half of the earthquakes in the Cascadia Subduction Zone are of this large type that appear to generate three rupture sequences."


Earthquake "pulses" are releases of energy from areas of high slip along the main fault. When a subduction zone earthquake occurs, the tectonic plates that have locked for centuries suddenly release. An area of ocean floor that may be as wide as 50 miles, and as long as 500 to 600 miles, can suddenly snap back, causing a massive tsunami. As that energy radiates down the fault, it is concentrated in certain areas, Goldfinger said. The severity of the tsunami in any locality depends on how much energy is released, and what the undersea terrain is like.

The energy pulses, which are part of the earthquake sequence and take place almost immediately, differ from aftershocks that may occur hours, days, weeks or months after the original earthquake. In fact, the December Sumatra quake was followed by an 8.7 tremor in March and, though it occurred well to the south, "looks to have been directly triggered by the stress of the December event," Goldfinger said.

"And there have been a lot of aftershocks since," he added.

Goldfinger said it appears the Indian Ocean fault is rupturing in a southerly direction and that Padang, the capital of West Sumatra, may be next in line for a major earthquake.

But whether that quake takes place in weeks or years remains to be seen. Though Padang’s last major quake was about 200 years ago, the increased stress on the fault makes it likely that the lag between events will be much shorter.

"When you load the stress on a fault, it shortens the time between quakes," Goldfinger pointed out. "It’s like putting a sheet of glass between two sawhorses – and then sticking a cinder block in the middle of the glass. It may not break right away, but the stress builds rapidly."

Comparatively little is known about the long-term tectonic history of the Indian Ocean – at least, compared to the Cascadia Subduction Zone, scientists say. Goldfinger has been able to identify 23 major earthquakes off the Pacific Northwest coast during the past 10,000 years through analysis of sediment deposits. At least 16, and possibly 17, of those quakes have ruptured along the entire length of the Cascadia Subduction Zone, requiring an event of magnitude 8.5 or better.

When a major offshore earthquake of that magnitude occurs, "you get ground acceleration of a couple of G’s," Goldfinger pointed out. "Mud and sand begin streaming down the continental margins, and out into the undersea canyons. Walls fail. And the sediments run out into the abyssal plain. The impact is much, much greater than you can get from any storm – or even a small magnitude quake."

Those coarse sediments – called turbidites – stand out from the finer particulates that accumulate on a surprisingly regular basis in between major tectonic events. By studying core samples from submarine channels in various locations along the subduction zone, Goldfinger and his colleagues have been able to create a 10,000-year timeline of huge earthquakes that provide sobering evidence that the Northwest is due for a major event. Going back farther than 10,000 years is proving to be difficult.

"The sea level used to be lower and rivers emptied directly into offshore canyons," he said. "You couldn’t differentiate between storms and earthquakes. But once sea levels rose, the river sediments were trapped on the shelf and upper slope, leaving a near-perfect earthquake record farther out."

Goldfinger said that evidence suggests turbidites might record earthquake pulses, but more testing is needed in Sumatra, where "we have good recordings of the earthquake."

What the Indian Ocean lacks is the same long-term sediment analysis that has been done in the Cascadia zone, says Goldfinger, who adds that conditions there are ideal for such research. He and a team of scientists from Indonesia and India are planning a series of cruises over the next several years to take core samples from the Indian Ocean in an attempt to map the tectonic history of the region.

"If anything, the Indian Ocean is even better suited than Cascadia for this kind of core analysis because there is a huge basin between the rivers and the deep ocean that keeps the terrestrial sediments close to land," Goldfinger said. "We should clearly be able to see the December and March turbidites stacked on top of the finer sediments."

Chris Goldfinger | EurekAlert!
Further information:
http://www.coas.oregonstate.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>