Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tropical Atlantic cooling and African deforestation correlate to drought


Against the backdrop of the Montreal Summit on global climate being held this week, an article on African droughts and monsoons, by a University of California, Santa Barbara scientist and others, which appears in the December issue of the journal Geology, underlines concern about the effects of global climate change.

Tropical ocean temperatures and land vegetation have an important effect on African monsoon systems, explains first author Syee Weldeab, a post-doctoral fellow in the Department of Earth Science at the University of California, Santa Barbara. The monsoons are critical to sustaining agriculture in equatorial Africa.

Weldeab says that man’s reduction of inland vegetation cover through deforestation and overgrazing in equatorial Africa and increases in global temperatures through the emission of greenhouse gases will likely strongly affect the African monsoon system in the future.

"The weakening of the monsoon has a huge effect," says Weldeab, "resulting in shortages of harvests and hunger."

As vegetation is cleared, the land loses its capacity to retain heat and becomes cooler. As the land cools relative to the ocean, there is a larger gradient between the ocean temperature and the land causing less moisture to be pulled from the ocean air toward the land.

Weldeab and his colleagues studied cores from beneath the ocean floor of the Gulf of Guinea, in the tropical Atlantic just off the coast of Cameroon, to understand the history of climate in the area for the past 10,000 years. The cores contain foraminifera, tiny plankton shells that are composed of calcium and trace elements. By studying the ratios of magnesium and calcium in the shells, the scientists are able to correlate that information to past temperature changes in the ocean. In analyzing these records for the past 10,000 years, the scientists found three pronounced cooling periods which indicate drought.

Besides the ocean records, the scientists analyzed data from four lakes that are distributed across central Africa on the monsoon belt. The three sea surface cooling periods found by the scientists correlate to records of low lake levels. These clearly were times of drought; the land became more arid.

The authors state, "periods of drought likely brought about environmental hardship, triggering population migration, giving rise to changes in the modes of agricultural production, and influencing the fall or rise of civilizations."

Weldeab points out that the past 50 years are marked by deforestation and overgrazing much greater than that of the past, thus disturbing the climate system that results from the coupling of sea surface temperature and vegetation cover on land.

"We can’t predict how, but it is clear that this human-induced change will change the terrestrial and ocean system," he says. He notes that droughts in this region are currently occurring more frequently than in the past few thousand years, although the frequency of the droughts is unpredictable.

"People in less developed countries live from rain, harvests and animal husbandry," says Weldeab. "Drought directly affects them; they run out of food for people and animals."

Gail Gallessich | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>