Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No safe ground for life to stand on during world’s largest mass extinction

02.12.2005


The world’s largest mass extinction was probably caused by poisonous volcanic gas, according to research published today.



The research, published in the journal Geology, reveals vital clues about the mass extinction at the end of the Permian period, 250 million years ago, when mammal-like reptiles known as synapsids roamed the earth.

Many scientists had previously thought that an asteroid hitting the earth or a deep-sea methane release had caused the extinction, which obliterated more than two-thirds of reptile and amphibian families.


However, analysis of a unique set of molecules found in rocks taken from the Dolomites in Italy has enabled scientists to build up a picture of what actually happened. The molecules are the remains of polysaccharides, large sugar-based structures common in plants and soil, and they tell the story of the extinction.

The molecules date from the same time as a major volcanic eruption that caused the greatest ever outpouring of basalt lava over vast swathes of land in present day Siberia.

The researchers believe that the volcanic gases from the eruption, which would have depleted earth’s protective ozone layer and acidified the land and sea, killed rooted vegetation. This meant that soil was no longer retained and it washed into the surrounding oceans.

The chemistry of the rocks reveals that although the sugar molecules were found in marine sediments, they derived from land, supporting the theory that massive soil erosion caused them to end up in the sea.

Soil materials in the oceans would have blocked out light and soaked up oxygen. Analysis of rock chemistry suggests that after the soil crisis on land, the marine ecosystem succumbed to the stresses of environmental change and oceanic life faltered, completing a global catastrophe.

Dr Mark Sephton, from Imperial College London’s Department of Earth Sciences and Engineering and lead author of the research, said: "The cause of the end Permian extinction has been highly controversial. We show that the terrestrial ecosystem was the first to suffer. The continent-wide nature of the event implies that it was caused by something in the atmosphere. The unique chemical data indicates that something fast and catastrophic happened on land."

Prof Henk Visscher of Utrecht University, also part of the research team, commented: "Similar to the ’Dead Zone’ nowadays spreading in the Gulf of Mexico, the soil crisis could have caused a worldwide expanse of uninhabitable low-oxygen conditions in shallow marine waters. So what began on land ended in the sea. It seems there was no place to hide at this time of great dying."

Dr Sephton believes that lessons can be learned in the present day from the damage caused by the end Permian extinction: "Land degradation is a worsening global problem thanks to human activity and soil erosion has caused the loss of a third of arable land over the last forty years. 35% of the Earth’s land is now soil-free. Identifying the nature of the end Permian soil crisis may help us understand what is in store for us in the years ahead," he said.

The research was carried out by an international team of scientists from the United Kingdom, the Netherlands and the United States.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>