Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’in situ’ composition measurements made in Titan’s atmosphere

01.12.2005


Unique results from the Aerosol Collector and Pyrolyser (ACP) and the Gas Chromatograph Mass Spectrometer (GCMS) have given scientists their first in situ chemical data on Titan’s atmosphere, including aerosols, chemical composition and isotopes.



Two of Titan’s key unknowns are the origin of the molecular nitrogen and methane in the atmosphere, and the mechanisms by which methane is maintained in the face of rapid destruction by photochemistry (chemical processes that are accompanied by or catalysed by the emission or absorption of visible or ultraviolet light).

The GCMS measured chemical composition and isotope abundances from 140 km altitude to the surface and confirmed the primary constituents were nitrogen and methane, and that the haze in the atmosphere is primarily methane.


From isotopic ratio measurements, the Huygens scientists obtained two key findings. The carbon isotope ratio (12C/13C) measured in methane suggests a continuous or periodic replenishment of methane in the atmosphere, but no evidence was found of active biological systems.

The nitrogen isotope ratio (14N/15N) suggests to the scientists that the early atmosphere of Titan was five times denser than it is now, and hence lost nitrogen to space.

Argon 36 was detected for the first time, but not xenon or krypton. However, the argon was found in low abundance, which is especially interesting because of the huge, nitrogen-dominated atmosphere and because about 50% of the mass of Titan is water ice, known to be a potentially efficient carrier of noble gases.

This low abundance implies the atmosphere was condensed or captured as ammonia, instead of nitrogen. The non-detection of the other noble gases, a surprising finding, will also fuel theories of the origin and evolution of Titan’s atmosphere.

The composition of surface vapours obtained by GCMS after landing shows that Huygens landed on a surface wet with methane, which evaporated as the cold soil was heated by the warmer probe. The surface was also rich in organic compounds not seen in the atmosphere, for example cyanogen and ethane, indicating a complex chemistry on Titan’s surface as well as in the atmosphere.

Argon 40 was also detected at the surface and its presence indicates that Titan has experienced in the past, and is most likely still experiencing today, internal geological activity.

Titan’s aerosols play an important role in determining atmospheric thermal structure, affecting the processes of radiative heating and cooling. They can help to create warm and cold layers that in turn contribute to circulation patterns and determine the strengths of winds.

The ACP obtained direct measurements of the chemical make-up of these aerosol particles. From an analysis of the products obtained by pyrolysis (chemical decomposition of organic materials by heating) of aerosols at 600°C, ammonia and hydrogen cyanide were the first molecules identified.

This is of prime importance because ammonia is not present as a gas in the atmosphere, hence the aerosols must include the results of chemical reactions that may have produced complex organic molecules. They are not simply condensates.

Aerosol particles may also act as condensation nuclei for cloud formation, and are the end-products of a complex organic chemistry which is important in astrobiology. Indeed, Titan offers the possibility to observe chemical pathways involving molecules that may have been the building blocks of life on Earth.

Franco Bonacina | alfa
Further information:
http://www.esa.int/SPECIALS/Results_from_Mars_Express_and_Huygens/SEMK1TULWFE_0.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>