Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ’in situ’ composition measurements made in Titan’s atmosphere

01.12.2005


Unique results from the Aerosol Collector and Pyrolyser (ACP) and the Gas Chromatograph Mass Spectrometer (GCMS) have given scientists their first in situ chemical data on Titan’s atmosphere, including aerosols, chemical composition and isotopes.



Two of Titan’s key unknowns are the origin of the molecular nitrogen and methane in the atmosphere, and the mechanisms by which methane is maintained in the face of rapid destruction by photochemistry (chemical processes that are accompanied by or catalysed by the emission or absorption of visible or ultraviolet light).

The GCMS measured chemical composition and isotope abundances from 140 km altitude to the surface and confirmed the primary constituents were nitrogen and methane, and that the haze in the atmosphere is primarily methane.


From isotopic ratio measurements, the Huygens scientists obtained two key findings. The carbon isotope ratio (12C/13C) measured in methane suggests a continuous or periodic replenishment of methane in the atmosphere, but no evidence was found of active biological systems.

The nitrogen isotope ratio (14N/15N) suggests to the scientists that the early atmosphere of Titan was five times denser than it is now, and hence lost nitrogen to space.

Argon 36 was detected for the first time, but not xenon or krypton. However, the argon was found in low abundance, which is especially interesting because of the huge, nitrogen-dominated atmosphere and because about 50% of the mass of Titan is water ice, known to be a potentially efficient carrier of noble gases.

This low abundance implies the atmosphere was condensed or captured as ammonia, instead of nitrogen. The non-detection of the other noble gases, a surprising finding, will also fuel theories of the origin and evolution of Titan’s atmosphere.

The composition of surface vapours obtained by GCMS after landing shows that Huygens landed on a surface wet with methane, which evaporated as the cold soil was heated by the warmer probe. The surface was also rich in organic compounds not seen in the atmosphere, for example cyanogen and ethane, indicating a complex chemistry on Titan’s surface as well as in the atmosphere.

Argon 40 was also detected at the surface and its presence indicates that Titan has experienced in the past, and is most likely still experiencing today, internal geological activity.

Titan’s aerosols play an important role in determining atmospheric thermal structure, affecting the processes of radiative heating and cooling. They can help to create warm and cold layers that in turn contribute to circulation patterns and determine the strengths of winds.

The ACP obtained direct measurements of the chemical make-up of these aerosol particles. From an analysis of the products obtained by pyrolysis (chemical decomposition of organic materials by heating) of aerosols at 600°C, ammonia and hydrogen cyanide were the first molecules identified.

This is of prime importance because ammonia is not present as a gas in the atmosphere, hence the aerosols must include the results of chemical reactions that may have produced complex organic molecules. They are not simply condensates.

Aerosol particles may also act as condensation nuclei for cloud formation, and are the end-products of a complex organic chemistry which is important in astrobiology. Indeed, Titan offers the possibility to observe chemical pathways involving molecules that may have been the building blocks of life on Earth.

Franco Bonacina | alfa
Further information:
http://www.esa.int/SPECIALS/Results_from_Mars_Express_and_Huygens/SEMK1TULWFE_0.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>