Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ice cores expand view of climate history

25.11.2005


Two new studies of gases trapped in Antarctic ice cores have extended the record of Earth’s past climate almost 50 percent further, adding another 210,000 years of definitive data about the makeup of the Earth’s atmosphere and providing more evidence of current atmospheric change.



The research is being published in the journal Science by participants in the European Project for Ice Coring in Antarctica. It’s "an amazing accomplishment we would not have thought possible" as recently as 10 years ago, said Ed Brook, a professor of geosciences at Oregon State University, who analyzed the studies in the same issue of this professional journal.

"Not long ago we thought that previous ice studies which go back about 500,000 years might be the best we could obtain," said Brook, who is also the co-chair of the International Partnerships in Ice Coring Sciences, a group that’s helping to plan future ice core research efforts around the world.


"Now we have a glimpse into the past of up to 650,000 years, and we believe it may be possible to go as much as one million years or more," Brook said. "This will give us a fuller picture of Earth’s past climates, the way they changed and fluctuated, and the forces that caused the changes. We’ll be studying this new data for years."

As the data become more solid about the atmospheric conditions of the past, it’s becoming increasingly clear that the current conditions of the past 200 years are a distinct anomaly, Brook said.

"The levels of primary greenhouse gases such as methane, carbon dioxide and nitrous oxide are up dramatically since the Industrial Revolution, at a speed and magnitude that the Earth has not seen in hundreds of thousands of years," Brook said. "There is now no question this is due to human influence."

The ice cores being taken from Greenland, Antarctica and other sites provide an invaluable record of Earth’s past climates, researchers say. By testing the gases and trace elements found trapped in these cores, scientists gain a better understanding of how climate and atmospheric gases interact and evolve.

"We predict, for instance, that rising levels of greenhouse gases will warm our climate," Brook said. "There’s evidence that this is happening right now, and it would be interesting to find out if the same thing has happened at times in the distant past. And there are also concerns we’re exploring about rapid shifts in climate."

Analysis of the older cores just removed from Antarctica, Brook said, are consistent with some of the quick changes in methane and carbon dioxide levels that are related to abrupt climate change. However, it also appears that the natural climate cycles in the distant past – the development and retreat of Ice Ages, for instance – were smaller in magnitude and had less fluctuation in atmospheric gases than what the Earth is now experiencing.

There are critical questions that work of this type may help answer, researchers say. One of the most obvious is the relationship between increasing levels of greenhouse gases and global warming. But there are also concerns that the Earth’s climate may have changed very abruptly at times in the past, in complex interactions between the atmosphere, ocean currents and ice sheets.

Past studies of gases trapped in Greenland and Antarctic ice cores have suggested that Earth’s temperature can sometimes change amazingly fast, warming as much as 15 degrees in some regions within a couple of decades. At the same time, there are concerns about the change of major ocean currents, such as those in the North Atlantic Ocean, that are responsible for the comparatively mild climate of much of Europe. If that "thermohaline circulation pattern" were to abruptly shut down, as has happened at times in the past, it could plunge much of the European continent into a climate more closely resembling that of central Canada.

According to Brook, continuing research will help to address many of these questions. The international committee he co-chairs, which involves representatives from 17 nations, is considering such work as a very deep ice coring project in Antarctica that might provide a record of atmospheric gases 1.2 million years ago, or even further back in time. Other studies are also anticipated in Greenland and the Arctic.

Some of these projects will require drilling in challenging locations on very old ice, Brook said, at considerable cost in initiatives that require international cooperation.

"Ice cores are the cornerstones of global change research," Brook said. "They have played a central role in showing how closely climate and greenhouse gas concentrations were linked in the past, and they are demonstrating also that very abrupt climate switches can occur."

Ed Brook | EurekAlert!
Further information:
http://www.geo.oregonstate.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>