Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapidly accelerating glaciers may increase how fast the sea level rises

15.11.2005


Satellite images show that, after decades of stability, a major glacier draining the Greenland ice sheet has dramatically increased its speed and retreated nearly five miles in recent years. These changes could contribute to rapid melting of the Greenland ice sheet and cause the global sea level to rise faster than expected, according to researchers studying the glacier.



A paper describing these findings will be published this month in Geophysical Research Letters. The study focused on the Helheim glacier, one of the largest outlet glaciers in Greenland. Warming air and sea temperatures in the area likely caused the glacier to speed up, said Slawek Tulaczyk, associate professor of Earth sciences at the University of California, Santa Cruz, and a coauthor of the paper.

The Greenland ice sheet contains enough water to raise global sea levels by 15 to 20 feet. Although the entire ice sheet is unlikely to melt in this century, even a small change in the rate of melting could inundate low-lying coastal plains and add enough fresh water to the North Atlantic to change ocean circulation patterns, Tulaczyk said.


Ian Howat, a UCSC doctoral candidate in Earth sciences and first author on the paper, said changes such as this could have dramatic implications for climate models. Scientists use complex mathematical models to predict how climate, sea level, and ocean circulation will change in response to growing levels of greenhouse gases in the atmosphere.

"Current models treat the ice sheet like it’s just an ice cube sitting up there melting, and we’re finding it’s not that simple," Howat said.

The researchers used satellite images to determine the movement and retreat of Helheim glacier. Howat tracked the positions of glacial surface features to assess how fast the glacier moved between satellite fly-bys. Satellite images dating back as far as the 1970s show that the front of the glacier has remained in the same place for decades. But in 2001 it began retreating rapidly, moving back four and a half miles between 2001 and 2005. Howat’s measurements also show that the Helheim glacier has sped up from around 70 feet per day to nearly 110 feet per day and thinned by more than 130 feet since 2001.

As the glacier speeds up and retreats, new factors come into play that cause further acceleration and retreat, Howat said. "This is a very fast glacier, and it’s likely to get faster," he said.

The Helheim glacier is a river of ice that pours from the inland Greenland ice sheet, through a narrow rift in the coastal mountain range, and down into the sea at a rate of several miles per year. In the sea, the glacier’s weight keeps it firmly resting on the bottom, as long as the water depth is less than about nine-tenths of the glacier’s thickness. Where the water is deep enough to cause the end of the glacier to float, its front becomes brittle and crumbles into icebergs, Tulaczyk explained.

Warming disrupts the delicate balance between glacier thickness and water depth by melting and thinning the glacier. Temperatures in Greenland have increased by more than five degrees Fahrenheit (three degrees Celsius) over the last decade. If the glacier thins beyond a critical point, it becomes ungrounded, floats, and rapidly disintegrates.

"Outlet glaciers may have been thinning for over a decade," Howat said. "But it’s only in the last few years that thinning reached a critical point and began drastically changing the glacier’s dynamics."

The retreating front of the glacier causes it to move down the mountain slope more rapidly. This thins the glacier further, which causes upstream parts of the glacier to perceive a steeper slope and begin moving faster, Tulaczyk said.

Many fiords, the channels carved by glaciers flowing into the sea, are deep with a shallow lip in front. Once the glacier floats off this shallow pinning point, it retreats into deeper water, making further disintegration likely. Reduced friction between ice and rock at the glacier bed can also increase glacier speed. Fiords often widen inland, causing the glacier to grate less heavily at the fiord walls and move faster as it retreats. And ice crystals in fast-moving glaciers can realign, further reducing friction, Howat said.

The Helheim glacier’s speedup has already propagated 12.5 miles up the glacier. The center of the Greenland ice sheet is only 150 miles inland, and the researchers worry that the effects of the glacier’s retreat will continue to move inland, ultimately decreasing the thickness of the whole ice sheet.

"If other glaciers in Greenland are responding like Helheim, it could easily cut in half the time it will take to destroy the Greenland ice sheet," Howat said. "This is a process we thought was only happening in Antarctica, and now we’re seeing that it happens really fast in Greenland."

Recent studies have shown that many other glaciers in the southern half of Greenland are retreating. To date, only one other glacier, the Jakobshavn Isbrae glacier in the southwest, has been studied sufficiently to determine that it is speeding up as it retreats. But Tulaczyk expects similar mechanisms are at work in other retreating glaciers.

"Our research provides strong evidence that rapid melting processes such as we observed at the Helheim glacier will play a role in ice sheet reduction, but they are currently not included in the models," Tulaczyk said. "My ultimate goal is to convince ice sheet modelers to incorporate this dynamic process in the models."

Emily Saarman | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>