Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapidly accelerating glaciers may increase how fast the sea level rises

15.11.2005


Satellite images show that, after decades of stability, a major glacier draining the Greenland ice sheet has dramatically increased its speed and retreated nearly five miles in recent years. These changes could contribute to rapid melting of the Greenland ice sheet and cause the global sea level to rise faster than expected, according to researchers studying the glacier.



A paper describing these findings will be published this month in Geophysical Research Letters. The study focused on the Helheim glacier, one of the largest outlet glaciers in Greenland. Warming air and sea temperatures in the area likely caused the glacier to speed up, said Slawek Tulaczyk, associate professor of Earth sciences at the University of California, Santa Cruz, and a coauthor of the paper.

The Greenland ice sheet contains enough water to raise global sea levels by 15 to 20 feet. Although the entire ice sheet is unlikely to melt in this century, even a small change in the rate of melting could inundate low-lying coastal plains and add enough fresh water to the North Atlantic to change ocean circulation patterns, Tulaczyk said.


Ian Howat, a UCSC doctoral candidate in Earth sciences and first author on the paper, said changes such as this could have dramatic implications for climate models. Scientists use complex mathematical models to predict how climate, sea level, and ocean circulation will change in response to growing levels of greenhouse gases in the atmosphere.

"Current models treat the ice sheet like it’s just an ice cube sitting up there melting, and we’re finding it’s not that simple," Howat said.

The researchers used satellite images to determine the movement and retreat of Helheim glacier. Howat tracked the positions of glacial surface features to assess how fast the glacier moved between satellite fly-bys. Satellite images dating back as far as the 1970s show that the front of the glacier has remained in the same place for decades. But in 2001 it began retreating rapidly, moving back four and a half miles between 2001 and 2005. Howat’s measurements also show that the Helheim glacier has sped up from around 70 feet per day to nearly 110 feet per day and thinned by more than 130 feet since 2001.

As the glacier speeds up and retreats, new factors come into play that cause further acceleration and retreat, Howat said. "This is a very fast glacier, and it’s likely to get faster," he said.

The Helheim glacier is a river of ice that pours from the inland Greenland ice sheet, through a narrow rift in the coastal mountain range, and down into the sea at a rate of several miles per year. In the sea, the glacier’s weight keeps it firmly resting on the bottom, as long as the water depth is less than about nine-tenths of the glacier’s thickness. Where the water is deep enough to cause the end of the glacier to float, its front becomes brittle and crumbles into icebergs, Tulaczyk explained.

Warming disrupts the delicate balance between glacier thickness and water depth by melting and thinning the glacier. Temperatures in Greenland have increased by more than five degrees Fahrenheit (three degrees Celsius) over the last decade. If the glacier thins beyond a critical point, it becomes ungrounded, floats, and rapidly disintegrates.

"Outlet glaciers may have been thinning for over a decade," Howat said. "But it’s only in the last few years that thinning reached a critical point and began drastically changing the glacier’s dynamics."

The retreating front of the glacier causes it to move down the mountain slope more rapidly. This thins the glacier further, which causes upstream parts of the glacier to perceive a steeper slope and begin moving faster, Tulaczyk said.

Many fiords, the channels carved by glaciers flowing into the sea, are deep with a shallow lip in front. Once the glacier floats off this shallow pinning point, it retreats into deeper water, making further disintegration likely. Reduced friction between ice and rock at the glacier bed can also increase glacier speed. Fiords often widen inland, causing the glacier to grate less heavily at the fiord walls and move faster as it retreats. And ice crystals in fast-moving glaciers can realign, further reducing friction, Howat said.

The Helheim glacier’s speedup has already propagated 12.5 miles up the glacier. The center of the Greenland ice sheet is only 150 miles inland, and the researchers worry that the effects of the glacier’s retreat will continue to move inland, ultimately decreasing the thickness of the whole ice sheet.

"If other glaciers in Greenland are responding like Helheim, it could easily cut in half the time it will take to destroy the Greenland ice sheet," Howat said. "This is a process we thought was only happening in Antarctica, and now we’re seeing that it happens really fast in Greenland."

Recent studies have shown that many other glaciers in the southern half of Greenland are retreating. To date, only one other glacier, the Jakobshavn Isbrae glacier in the southwest, has been studied sufficiently to determine that it is speeding up as it retreats. But Tulaczyk expects similar mechanisms are at work in other retreating glaciers.

"Our research provides strong evidence that rapid melting processes such as we observed at the Helheim glacier will play a role in ice sheet reduction, but they are currently not included in the models," Tulaczyk said. "My ultimate goal is to convince ice sheet modelers to incorporate this dynamic process in the models."

Emily Saarman | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>