Clay material may have acted as ’primordial womb’ for first organic molecules

Arizona State University geochemist Lynda Williams and her colleagues have discovered that certain clay minerals under conditions at the bottom of the ocean may have acted as incubators for the first organic molecules on Earth.

Williams’ research suggests how some of the fundamental materials necessary for life might have come into existence deep in the sea. The results of Williams’ experiments were published in the article, “Organic Molecules Formed in a Primordial Womb,” in the November issue of Geology.

Williams and her team mimicked the conditions found in hydrothermal vents along the lines where tectonic plates converge on the ocean floor. The vents are fissures in the seafloor that spew out super-hot water much like an underwater volcano.

From earlier work, the researchers knew that with high enough temperatures and pressure, volcanic emanations could produce the chemical compound methanol. What scientists did not know was how the methanol could survive intense temperatures of 300 to 400 C.

“When I first heard that, I thought, ’that’s strange,’” Williams said of the methanol formation. “Methanol is supposed to break down at those temperatures. I asked myself, ’what can protect it?’ The answer is common clay minerals.”

Williams hypothesized that the expandable clay surrounding the hydrothermal vents might have served as a “primordial womb” for infant molecules, sheltering them within its mineral layers. She devised an experiment that would test whether the organic compound methanol would be protected between the clay layers.

Williams and her team simulated the intense heat and pressure of the ocean floor within a pressurized vessel. The reaction of the clay and methanol was monitored over six weeks. The team found that the expandable clay not only protected the methanol, but also promoted reactions that formed even more complex organic compounds. The mineralogical reaction between the clay and methanol was facilitating the production of new organic material.

Scientists theorize that the diverse organic molecules protected within the clay might eventually be expelled into an environment more hospitable to life, leading to an “organic soup.” What makes the finding so exciting is that the experimental conditions reflect scientists’ best estimations of the simplest conditions that likely existed when life began, Williams said.

“This research tells us that as long as there is water and the right chemical ingredients, common clay minerals can help produce the ingredients for biomolecules (chemical components used by living organisms),” Williams said.

Because the reactions simulated in these experiments can be found anywhere volcanic activity exists, Williams added, it is likely that similar organic compounds could be produced on other volcanically active planets that have water. Additional experiments are planned to find out what chemical conditions would be required to form the building blocks of life.

“We have only started investigating the influence of clays on the origin of life,” Williams said.

Media Contact

Skip Derra EurekAlert!

More Information:

http://www.asu.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors