Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clay material may have acted as ’primordial womb’ for first organic molecules


Arizona State University geochemist Lynda Williams and her colleagues have discovered that certain clay minerals under conditions at the bottom of the ocean may have acted as incubators for the first organic molecules on Earth.

Williams’ research suggests how some of the fundamental materials necessary for life might have come into existence deep in the sea. The results of Williams’ experiments were published in the article, "Organic Molecules Formed in a Primordial Womb," in the November issue of Geology.

Williams and her team mimicked the conditions found in hydrothermal vents along the lines where tectonic plates converge on the ocean floor. The vents are fissures in the seafloor that spew out super-hot water much like an underwater volcano.

From earlier work, the researchers knew that with high enough temperatures and pressure, volcanic emanations could produce the chemical compound methanol. What scientists did not know was how the methanol could survive intense temperatures of 300 to 400 C.

"When I first heard that, I thought, ’that’s strange,’" Williams said of the methanol formation. "Methanol is supposed to break down at those temperatures. I asked myself, ’what can protect it?’ The answer is common clay minerals."

Williams hypothesized that the expandable clay surrounding the hydrothermal vents might have served as a "primordial womb" for infant molecules, sheltering them within its mineral layers. She devised an experiment that would test whether the organic compound methanol would be protected between the clay layers.

Williams and her team simulated the intense heat and pressure of the ocean floor within a pressurized vessel. The reaction of the clay and methanol was monitored over six weeks. The team found that the expandable clay not only protected the methanol, but also promoted reactions that formed even more complex organic compounds. The mineralogical reaction between the clay and methanol was facilitating the production of new organic material.

Scientists theorize that the diverse organic molecules protected within the clay might eventually be expelled into an environment more hospitable to life, leading to an "organic soup." What makes the finding so exciting is that the experimental conditions reflect scientists’ best estimations of the simplest conditions that likely existed when life began, Williams said.

"This research tells us that as long as there is water and the right chemical ingredients, common clay minerals can help produce the ingredients for biomolecules (chemical components used by living organisms)," Williams said.

Because the reactions simulated in these experiments can be found anywhere volcanic activity exists, Williams added, it is likely that similar organic compounds could be produced on other volcanically active planets that have water. Additional experiments are planned to find out what chemical conditions would be required to form the building blocks of life.

"We have only started investigating the influence of clays on the origin of life," Williams said.

Skip Derra | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>