Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could bubbles help increase Earth’s oil reserves?

08.11.2005


New research which could help salvage huge amounts of the world’s oil that currently goes to waste is being carried out as a collaborative venture between Aston University in Birmingham, UK and Nottingham Trent University. Experts are looking at using Magnetic Resonance Image (MRI) scanners and special micro-bubbles to find a way of increasing the oil quantity being extracted from porous rock, which is often less than 30%.



All of the world’s oil is found in porous rock beneath the ground and is usually obtained by drilling two holes – water is pumped into the first, which forces oil through the second. However, only a small amount of the oil is ever taken before the water starts to re-emerge. Once this happens the borehole is closed and the remaining 70% of oil can never be recovered.

The research team, led by Senior Lecturer in Physics, Dr Martin Bencsik (Nottingham Trent) in collaboration with Dr Yvonne Perrie (Senior Lecturer in Pharmaceutics; Aston University) has received funding from the Engineering and Physical Sciences Research Council to develop a novel application for an MRI scanner, normally used to create an image of the inside of the human body.


MRI is known to be sensitive to water density so the team will be driving water containing micro-bubbles (known as liposomes) through small pieces of rock in order to make a three-dimensional image of its pressure. As the team builds up an idea of how the water pressure changes in this journey it is hoped they will be able to develop new ways to increase the oil quantity currently being extracted. The gas-filled liposomes (micro-bubble fluid) will be designed and made by Dr Yvonne Perrie at Aston University.

The research could also benefit the automotive industry as the team will look into whether they can improve the ability to drive resin into the porous woven fibreglass which makes up the majority of our vehicles. The fibreglass is shaped to whatever form is needed and is then reinforced with the resin making it stronger and less likely to fail.

Dr Bencsik said: “These research areas will make further use of MRI technology. Most people think of healthcare when they hear the words MRI scanner but we are certain that it can be used to achieve many other valuable uses, including this new research into oil extraction.’

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>