Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Scientists Participate in Historic First Surface Vessel Voyage across Canada Basin


Scientists aboard pioneering icebreaking ships investigate ocean conditions in unexplored region to better understand Arctic’s role in global climate change

Two ships taking part in a recently completed research voyage investigating the oceanography, marine geology, geophysics and ice cover of the Arctic Ocean have become the first surface vessels to traverse the Canada Basin, the ice-covered sea between Alaska and the North Pole.

The Swedish vessel Oden and the United States Coast Guard’s Healy, both icebreaking vessels outfitted for oceanographic research, completed the historic south-to-north trek in September as part of a recently concluded expedition to explore the marine environment in this unknown region.
Although the same area had been crossed by submarines, the central Arctic Ocean had been Earth’s least explored ocean area by surface ships due to its heavy concentration of floating sea ice, which in some areas spans more than 10 feet in thickness.

Jim Swift, a research oceanographer at UCSD’s Scripps Institution of Oceanography, participated in the voyage as leader of a five-person team on board Oden that analyzed ocean conditions in an effort to better understand the Arctic’s role in the earth’s ocean and climate system. Other scientists on board Oden and Healy hailed from Sweden, Finland, Canada, Germany, Norway and Denmark.

According to Swift, part of the reason the Canada Basin surface crossing could be attempted and achieved at this time is because the ice cover over much of the Arctic Ocean has thinned in recent decades, opening the door to surface ships.

"Some indications have shown that the ice volume in the Arctic Ocean has reduced nearly 40 percent since the time submarine transects began more than 40 years ago," said Swift, a scientist in the Physical Oceanography Research Division at Scripps. "There is some scientific debate about the actual percentage but there is no doubt of the thinning in many areas of the region."

Swift’s investigations aboard Oden, research funded by the U.S. National Science Foundation Office of Polar Programs, involved examinations of ocean properties to help evaluate recent changes in ocean climate and global change studies. Swift and his team measured the seawater’s temperature, salinity and chemical characteristics. Ultimately, the new data will aid assessments of climate change and be used to improve and test scientific models that describe the climate system.

In one example, the new information is already helping scientists decipher how warm water from the Gulf Stream and the Atlantic Ocean circulate in the Arctic Ocean basins. In a case of synergy between geological and oceanographic measurements, scientists using Healy’s multi-beam (wide scanning) sonar made maps of the ocean floor over a region of a central Arctic ocean ridge many expected to contain a gap enhancing interchange of deep waters between sub-basins of the Arctic Ocean. At the same time, the Oden science team determined which waters were actually being exchanged, thus partly settling a scientific debate about the deep circulation that underlies the other layers.

"The unique aspect of this cruise was the ability to capture first-time measurements of ocean water across a wide suite of parameters throughout the central Canada Basin," said Swift.

Among the research issues he is addressing, Swift is investigating an Arctic ocean warming signal that emerged in the 1990s in a layer of ocean water, roughly 650- to 2,625-feet deep (200 to 800 meters), and whether the warming is continuing in this decade. Early results from the Oden cruise indicate that the warming was a short-lived burst, or a "pulse," though water temperatures at that depth have not fully receded to pre-1990s measurements.

"Our measurements confirm other recent measurements in showing that the warming was a pulse event rather than a shift," said Swift. "All of the results from the Oden cruise will help tie various measurements together to help us see what the big picture looks like in the Arctic."

In addition to Swift’s research in physical and chemical oceanography, researchers from the international team onboard Oden and Healy included biologists investigating organic processes in snow and ice to help identify concentrations of ozone-decomposing compounds in the atmosphere. Other researchers obtained seafloor sediment cores for analysis while others used instruments to survey ocean depths and seismic data.

While ice thinning allowed the historic Canada Basin passage, the two vessels still encountered areas of extremely thick ice, forcing the ships to work in tandem to cut through the ice and forge a passage to the North Pole. Strategic route planning using satellite ice images and frequent helicopter ice reconnaissance aided the navigation. The Oden and Healy reached the North Pole at 9 a.m. (Alaska time) on Sept. 12.

The cruise marked the concluding leg of the Swedish 2005 Beringia Expedition, supported by the Swedish Polar Secretariat. Healy was supported largely by the U.S. National Science Foundation.

Other members of Swift’s team included Susan Becker (chemical specialist), Mary Johnson (data processing specialist), Erik Quiroz (chemistry and deck specialist), and Robert Palomares (electronics and deck specialist).

Mario Aguilera | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>