Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


California’s oak woodlands face a new threat: Climate change


California’s iconic oak woodlands have endured many assaults over the years--they’ve been cut for fuel, cleared for vineyards and housing developments, and their seedlings face intense grazing pressure and competition from invasive grasses. But the future will bring a new threat--climate change--which could drastically reduce the areas in which oaks can grow.

Researchers at the University of California, Santa Cruz, have taken a close look at the implications of climate change for two familiar California oak species--blue oak and valley oak. Their findings will be published online this week in the Proceedings of the National Academy of Sciences and will appear in the November 8 issue of the journal.

The researchers found that the areas of the state where the climate is suitable for these species to grow will shift northward and could shrink to nearly half their current size as a result of global warming.

"Species such as oaks that we think of as occurring throughout California and that are such a recognizable part of the landscape are vulnerable to climate change. It’s not just the rare and endangered species that will be affected," said Lara Kueppers, a postdoctoral researcher at UCSC and first author of the study.

The researchers used sophisticated climate models to project what California’s climate may be like in the final decade of the 21st century, assuming a "business-as-usual" scenario for ongoing emissions of greenhouse gases. Based on those projections, they predicted the potential ranges for blue oak and valley oak under the new climatic conditions, and compared that with their ranges under current conditions.

Other researchers have used global climate models to study how the geographic areas where various species occur are likely to shift as a result of climate change. Even with powerful supercomputers, however, global climate models are limited in how much detail they can provide on a regional level. The UCSC researchers thought this would be a particular problem in California, with its complex geography and diverse ecosystems. So in addition to a global climate model, they also used a regional climate model for California that provides enough detail to distinguish major mountain ranges and valleys.

As expected, the global and regional climate models gave different results, with the regional model indicating significantly smaller potential ranges in the future for the two oak species. The main reason for the difference is that the regional model shows stronger and more rapid warming at higher elevations, whereas the global model yields average results over large areas that blur the distinction between mountains and valleys within California.

The regional model yields a climate scenario in which the future range for blue oak shrinks to 59 percent of its current range, and for valley oak the future range shrinks to 54 percent of its current range. For both species, their potential habitat shifts northward, meaning that these species are not present in much of the area where climatic conditions will be right for them in the future.

"Suitable habitat is lost in the southern part of the state, and about a third of the new potential habitat is in areas where blue oaks do not currently grow. Most ecologists would not be comfortable assuming that the oaks will be able to get to those new areas," Kueppers said.

Lisa Sloan, professor of Earth sciences and a coauthor of the paper, said the shifting of ranges for oaks and other species poses a challenge for conservation planning.

"Our state parks and other protected areas are not set up to move with climate change," said Sloan, who directs UCSC’s Climate Change and Impacts Laboratory where the climate model computations were carried out.

The other coauthors on the PNAS paper are postdoctoral researcher Mark Snyder; Erika Zavaleta, assistant professor of environmental studies; and Brian Fulfrost, coordinator of UCSC’s Geographical Information Systems Laboratory.

Blue oak and valley oak do not occur naturally outside of California. Blue oak is found in the foothills of the Coast Ranges and the western Sierra Nevada, while valley oak grows on deeper soils along rivers and streams, particularly in the Central Valley. Both species are sensitive to temperature and rainfall. The changes in their potential ranges under the climate change scenario were attributable primarily to increasing temperature and decreasing rainfall during the growing season, Kueppers said.

"If this scenario is what we can expect with climate change, then these oak woodlands are going to have to adapt pretty dramatically to new conditions or move significant distances in a relatively short period of time," Kueppers said.

The study highlights the importance of studying climate change on a regional scale, because its effects will vary from one region to another, Sloan added.

"More intense hurricanes are the issue on the Gulf Coast, while melting sea ice is important in the Arctic," she said. "In California, the strongest effects of climate change are in the mountains, creating concern for our water supply and for the natural ecosystems that attract so many visitors."

Tim Stephens | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>