Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California’s oak woodlands face a new threat: Climate change

01.11.2005


California’s iconic oak woodlands have endured many assaults over the years--they’ve been cut for fuel, cleared for vineyards and housing developments, and their seedlings face intense grazing pressure and competition from invasive grasses. But the future will bring a new threat--climate change--which could drastically reduce the areas in which oaks can grow.



Researchers at the University of California, Santa Cruz, have taken a close look at the implications of climate change for two familiar California oak species--blue oak and valley oak. Their findings will be published online this week in the Proceedings of the National Academy of Sciences and will appear in the November 8 issue of the journal.

The researchers found that the areas of the state where the climate is suitable for these species to grow will shift northward and could shrink to nearly half their current size as a result of global warming.


"Species such as oaks that we think of as occurring throughout California and that are such a recognizable part of the landscape are vulnerable to climate change. It’s not just the rare and endangered species that will be affected," said Lara Kueppers, a postdoctoral researcher at UCSC and first author of the study.

The researchers used sophisticated climate models to project what California’s climate may be like in the final decade of the 21st century, assuming a "business-as-usual" scenario for ongoing emissions of greenhouse gases. Based on those projections, they predicted the potential ranges for blue oak and valley oak under the new climatic conditions, and compared that with their ranges under current conditions.

Other researchers have used global climate models to study how the geographic areas where various species occur are likely to shift as a result of climate change. Even with powerful supercomputers, however, global climate models are limited in how much detail they can provide on a regional level. The UCSC researchers thought this would be a particular problem in California, with its complex geography and diverse ecosystems. So in addition to a global climate model, they also used a regional climate model for California that provides enough detail to distinguish major mountain ranges and valleys.

As expected, the global and regional climate models gave different results, with the regional model indicating significantly smaller potential ranges in the future for the two oak species. The main reason for the difference is that the regional model shows stronger and more rapid warming at higher elevations, whereas the global model yields average results over large areas that blur the distinction between mountains and valleys within California.

The regional model yields a climate scenario in which the future range for blue oak shrinks to 59 percent of its current range, and for valley oak the future range shrinks to 54 percent of its current range. For both species, their potential habitat shifts northward, meaning that these species are not present in much of the area where climatic conditions will be right for them in the future.

"Suitable habitat is lost in the southern part of the state, and about a third of the new potential habitat is in areas where blue oaks do not currently grow. Most ecologists would not be comfortable assuming that the oaks will be able to get to those new areas," Kueppers said.

Lisa Sloan, professor of Earth sciences and a coauthor of the paper, said the shifting of ranges for oaks and other species poses a challenge for conservation planning.

"Our state parks and other protected areas are not set up to move with climate change," said Sloan, who directs UCSC’s Climate Change and Impacts Laboratory where the climate model computations were carried out.

The other coauthors on the PNAS paper are postdoctoral researcher Mark Snyder; Erika Zavaleta, assistant professor of environmental studies; and Brian Fulfrost, coordinator of UCSC’s Geographical Information Systems Laboratory.

Blue oak and valley oak do not occur naturally outside of California. Blue oak is found in the foothills of the Coast Ranges and the western Sierra Nevada, while valley oak grows on deeper soils along rivers and streams, particularly in the Central Valley. Both species are sensitive to temperature and rainfall. The changes in their potential ranges under the climate change scenario were attributable primarily to increasing temperature and decreasing rainfall during the growing season, Kueppers said.

"If this scenario is what we can expect with climate change, then these oak woodlands are going to have to adapt pretty dramatically to new conditions or move significant distances in a relatively short period of time," Kueppers said.

The study highlights the importance of studying climate change on a regional scale, because its effects will vary from one region to another, Sloan added.

"More intense hurricanes are the issue on the Gulf Coast, while melting sea ice is important in the Arctic," she said. "In California, the strongest effects of climate change are in the mountains, creating concern for our water supply and for the natural ecosystems that attract so many visitors."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>