Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfossils show promise in prospecting climate history

01.11.2005


Petroleum exploration tool may have new use in hurricane study

In 2004 and now in 2005, the hurricane seasons have been horrifyingly intense – so how bad is the long-range forecast? Based on a century of data, meteorologists currently believe that a 30-year lull in hurricane activity is over and we are at the beginning of a new multi-decade period of larger and more frequent storms. However, there is other data that suggests we may also be coming to the end of a thousand year period of greatly diminished hurricane activity, making the outlook even worse.

Or not -- Finding the answer may depend on the research of University of North Carolina at Charlotte environmental micropaleontologist Scott Hippensteel -- and on microscopic shells, barrier marshes and fiddler crabs.



The answer may be critical not just in weather forecasting, but in adjusting insurance rates, in preparing for future disasters and in guiding future environmental policy. Since climate science cannot yet accurately predict the future, the best way we can find these answers is to look at history (or "prehistory"). But how much history is there for us to look at?

"Is the frequency of big storms going on now natural and should we expect this in the future?" Hippensteel said. "How much of this is anthropogenic? In trying to answer questions like these, what data do we have to compare our recent records to?

"We have 400 years of historical records, and about a century of real weather records. If you look at the coastal area that I’m doing research on, we’ve had one major hurricane – a category 4 or 5 – in the last 100 years. How do you adjust insurance rates based on one storm in 100 years? What we need is a much more extensive record -- maybe about 5,000 years worth of data."

There is, Hippensteel points out, a geological feature that records the past occurrence of major storms along the coasts – the sediments left behind by massive tidal surges that wash, tsunami-like over the land. The trick, of course, is to find places where surge-caused layers of coastal sedimentation are consistently preserved and then to identify distinguishing details in the hurricane-caused layers.

One place where such preservation may have occurred are the back-barrier marshes off South Carolina’s barrier islands – low islands that protect these lowlands from regular erosion from the sea, yet also allow the ocean and its sand in when major storm events occur. In intervening times, the settling of sediment in the marsh lays down other protective layers.

In order to "read" the layers of marsh sediment and to distinguish between those laid down by normal weather cycles, Hippensteel uses foraminifera deposits -- a paleontological tool that in the past has been heavily used by geologists involved in oil exploration.

Foraminifera are single-celled organisms that produce easily identifiable shells, which are preserved in vast quantities in ocean and shore sediments. These organisms are very diverse and the populations of species are highly specific to the time and place in which they lived, leaving a clear marker in undisturbed sediments of the time period and locale of deposition.

Hippensteel reasoned that he could use the geological marking information offered by foraminifera deposits and apply it to a unique characteristic of powerful hurricanes – their ability to dredge up off-shore ocean deposits.

In a study funded by the National Science Foundation, Hippensteel and University of Delaware geologist Ronald E. Martin analyzed sediment cores taken from a South Carolina back-barrier marsh and indeed found numerous layers that contained foraminifera that originated in off-shore water (results published in Topics in Geobiology, Vol. 15, 2000).

"At Folly Island, South Carolina we found storm deposits that were interbedded with regular marsh muds. We knew that the deposits were left by hurricanes because they contain forams that only live in the off-shore environments," Hippensteel noted.

"There is only one way that you could get layers of sand enriched with these forams, and that is a big hurricane dredges them up and throws them in the back barrier marshes. We used fossils as a tracer to prove the mode of deposition."

The foraminifera that Hippensteel found in the deposits include modern off-shore species and also species that were know to live off-shore in the Oligo-Miocene period (25-30 million years ago) and are known to be present in sediment deposits on the Carolinas continental shelf.

Hippensteel found the highest percentage of off-shore species in the thickest sandy layers of suspected storm sediment, which is consistent with the supposition that the biggest storms would both carry the most sand and also churn more of it from deeper water.

When the big storm layers were thus isolated in the Folly Island sediment cores, the results had disturbing implications.

"The record indicates that big storms have been less frequent in the last 1000 years than in the previous 2000 years before that," Hippensteel said. Recent layers contained far fewer layers of sand and very few layers containing significant numbers of off-shore foraminifera, compared with numerous such layers in the previous millennia.

Hippensteel cautions, however, that other environmental effects could be coloring this data. One big possible factor could be sediment-disturbing fiddler crabs, that might have only recently entered the area because of rising sea levels.

"Fiddler crabs mix the surface layers of sediment," he said. "If the sea level has been rising through time, we know that it is probable that our marshes have been getting muddier and muddier with more and more crabs. So if you think about it through time, the mixing is becoming more and more intense. The rising water may be making the recent record less certain."

The results shown in the foraminifera storm record are thus tantalizing but still uncertain, Hippensteel notes, and more work need to be done to verify the accuracy of the more recent layers.

"Our records seem to show that we have been in a thousand year period of relative calm, but that result doesn’t consider the possible destruction of the storm layers," he said. "Hurricanes may have been far more frequent before a thousand years ago… but we really don’t know yet. We need more data."

James Hathaway | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>