Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a better transmission system for deep-space applications

25.10.2005


Recent advances in wireless computing technology could improve deep-space missions like asteroid research and remote spacecraft operations by changing the way signals are sent from Earth. A new method designed to effectively deliver commands and instructions using hundreds of millions of tiny transmitters linked together could also free the giant satellite dishes currently used to send and receive the long-range information for other applications. A research paper describing the scheme for relatively simple high-power transmitters will be published in the October issue of Radio Science, a journal of the American Geophysical Union.



The technique is based on a principle known as a phased array, a method to align a number of mini-transmitters alongside one another and direct their combined beam into the sky. Such a system has previously been used for military radar technology, but has only recently become cost effective for civilian use because of improvements in consumer computing technology, according to the paper authored by Louis Scheffer at Cadence Design Systems. He indicates that the advantages from so many individual transmitters, using designs similar to cell phone technology, could include improved reliability and efficiency over currently used systems while reducing the transmission costs associated with the mammoth satellite dishes. Overall, he suggests that the net result could be significantly lowered costs for space communications, more data from science spacecraft, and an increase in planetary and deep-space research that requires remote signals.

Currently, planetary radars and distant spacecraft communications need transmitters with extremely high power, which has been accomplished by combining a strong microwave source with a large reflective antenna. This is now done with giant satellite dishes mechanically steered to a point in the sky. NASA’s Goldstone radar, for example, the agency’s sensitive, deep-space analysis radar, uses a 500 kilowatt transmitter and a 70-meter [230-foot] reflector for tracking asteroids that may collide with Earth. The large antenna is focused on only a small point in space at a time, and must be adjusted--and occasionally shut down--due to changing weather conditions. In addition, Scheffer points out that while almost all of the world’s largest antennas are used to both send and receive, the powerful transmissions severely hinder their ability to detect faint signals from space.


"Imagine trying to listen for a whisper while you are shouting," Scheffer said. "Also, these antennas are incredibly busy, so only a small fraction of the possible science gets done."

He proposes a large, flat array of low-power transmitters printed on a number of circuit boards and attached to an unmoving infrastructure on the ground, controlled by computers, which can deliver an enormously powerful beam in any direction, or even multiple directions at once. The paper outlines the requirements of a new system that would offer enhanced reliability, since a single failure would not affect the overall signal, and improved maintenance costs because of its lack of moving parts and weather resistance. The system Scheffer proposes is designed solely to transmit, as is needed for planetary radar and spacecraft control. The transmitters would also allow existing antennas to operate in a more efficient receive-only mode.

If available mass-production manufacturing techniques used for electronics can be assumed for the centimeter-sized chips, a transmitter similar to the Goldstone radar could be constructed for nearly one-quarter the cost, Scheffer reports. He notes that the significant amount of research and work done in the field of phased array radars renders the development of such a system plausible, though no previous applications to earth and space sciences have been studied. He further suggests that as computer chip technology continues to improve, additional wavelength and smaller antennas are possible to further improve the systems.

The first possible application would likely be for spacecraft command and asteroid research to observe objects that may pose a threat to Earth. A more speculative application, according to Scheffer, is that sending powerful signals to distant stars is easier and cheaper than previously thought. This dramatically reduces the cost of potential interstellar transmissions, such as searched for by SETI.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>