Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a better transmission system for deep-space applications

25.10.2005


Recent advances in wireless computing technology could improve deep-space missions like asteroid research and remote spacecraft operations by changing the way signals are sent from Earth. A new method designed to effectively deliver commands and instructions using hundreds of millions of tiny transmitters linked together could also free the giant satellite dishes currently used to send and receive the long-range information for other applications. A research paper describing the scheme for relatively simple high-power transmitters will be published in the October issue of Radio Science, a journal of the American Geophysical Union.



The technique is based on a principle known as a phased array, a method to align a number of mini-transmitters alongside one another and direct their combined beam into the sky. Such a system has previously been used for military radar technology, but has only recently become cost effective for civilian use because of improvements in consumer computing technology, according to the paper authored by Louis Scheffer at Cadence Design Systems. He indicates that the advantages from so many individual transmitters, using designs similar to cell phone technology, could include improved reliability and efficiency over currently used systems while reducing the transmission costs associated with the mammoth satellite dishes. Overall, he suggests that the net result could be significantly lowered costs for space communications, more data from science spacecraft, and an increase in planetary and deep-space research that requires remote signals.

Currently, planetary radars and distant spacecraft communications need transmitters with extremely high power, which has been accomplished by combining a strong microwave source with a large reflective antenna. This is now done with giant satellite dishes mechanically steered to a point in the sky. NASA’s Goldstone radar, for example, the agency’s sensitive, deep-space analysis radar, uses a 500 kilowatt transmitter and a 70-meter [230-foot] reflector for tracking asteroids that may collide with Earth. The large antenna is focused on only a small point in space at a time, and must be adjusted--and occasionally shut down--due to changing weather conditions. In addition, Scheffer points out that while almost all of the world’s largest antennas are used to both send and receive, the powerful transmissions severely hinder their ability to detect faint signals from space.


"Imagine trying to listen for a whisper while you are shouting," Scheffer said. "Also, these antennas are incredibly busy, so only a small fraction of the possible science gets done."

He proposes a large, flat array of low-power transmitters printed on a number of circuit boards and attached to an unmoving infrastructure on the ground, controlled by computers, which can deliver an enormously powerful beam in any direction, or even multiple directions at once. The paper outlines the requirements of a new system that would offer enhanced reliability, since a single failure would not affect the overall signal, and improved maintenance costs because of its lack of moving parts and weather resistance. The system Scheffer proposes is designed solely to transmit, as is needed for planetary radar and spacecraft control. The transmitters would also allow existing antennas to operate in a more efficient receive-only mode.

If available mass-production manufacturing techniques used for electronics can be assumed for the centimeter-sized chips, a transmitter similar to the Goldstone radar could be constructed for nearly one-quarter the cost, Scheffer reports. He notes that the significant amount of research and work done in the field of phased array radars renders the development of such a system plausible, though no previous applications to earth and space sciences have been studied. He further suggests that as computer chip technology continues to improve, additional wavelength and smaller antennas are possible to further improve the systems.

The first possible application would likely be for spacecraft command and asteroid research to observe objects that may pose a threat to Earth. A more speculative application, according to Scheffer, is that sending powerful signals to distant stars is easier and cheaper than previously thought. This dramatically reduces the cost of potential interstellar transmissions, such as searched for by SETI.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>