Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a better transmission system for deep-space applications

25.10.2005


Recent advances in wireless computing technology could improve deep-space missions like asteroid research and remote spacecraft operations by changing the way signals are sent from Earth. A new method designed to effectively deliver commands and instructions using hundreds of millions of tiny transmitters linked together could also free the giant satellite dishes currently used to send and receive the long-range information for other applications. A research paper describing the scheme for relatively simple high-power transmitters will be published in the October issue of Radio Science, a journal of the American Geophysical Union.



The technique is based on a principle known as a phased array, a method to align a number of mini-transmitters alongside one another and direct their combined beam into the sky. Such a system has previously been used for military radar technology, but has only recently become cost effective for civilian use because of improvements in consumer computing technology, according to the paper authored by Louis Scheffer at Cadence Design Systems. He indicates that the advantages from so many individual transmitters, using designs similar to cell phone technology, could include improved reliability and efficiency over currently used systems while reducing the transmission costs associated with the mammoth satellite dishes. Overall, he suggests that the net result could be significantly lowered costs for space communications, more data from science spacecraft, and an increase in planetary and deep-space research that requires remote signals.

Currently, planetary radars and distant spacecraft communications need transmitters with extremely high power, which has been accomplished by combining a strong microwave source with a large reflective antenna. This is now done with giant satellite dishes mechanically steered to a point in the sky. NASA’s Goldstone radar, for example, the agency’s sensitive, deep-space analysis radar, uses a 500 kilowatt transmitter and a 70-meter [230-foot] reflector for tracking asteroids that may collide with Earth. The large antenna is focused on only a small point in space at a time, and must be adjusted--and occasionally shut down--due to changing weather conditions. In addition, Scheffer points out that while almost all of the world’s largest antennas are used to both send and receive, the powerful transmissions severely hinder their ability to detect faint signals from space.


"Imagine trying to listen for a whisper while you are shouting," Scheffer said. "Also, these antennas are incredibly busy, so only a small fraction of the possible science gets done."

He proposes a large, flat array of low-power transmitters printed on a number of circuit boards and attached to an unmoving infrastructure on the ground, controlled by computers, which can deliver an enormously powerful beam in any direction, or even multiple directions at once. The paper outlines the requirements of a new system that would offer enhanced reliability, since a single failure would not affect the overall signal, and improved maintenance costs because of its lack of moving parts and weather resistance. The system Scheffer proposes is designed solely to transmit, as is needed for planetary radar and spacecraft control. The transmitters would also allow existing antennas to operate in a more efficient receive-only mode.

If available mass-production manufacturing techniques used for electronics can be assumed for the centimeter-sized chips, a transmitter similar to the Goldstone radar could be constructed for nearly one-quarter the cost, Scheffer reports. He notes that the significant amount of research and work done in the field of phased array radars renders the development of such a system plausible, though no previous applications to earth and space sciences have been studied. He further suggests that as computer chip technology continues to improve, additional wavelength and smaller antennas are possible to further improve the systems.

The first possible application would likely be for spacecraft command and asteroid research to observe objects that may pose a threat to Earth. A more speculative application, according to Scheffer, is that sending powerful signals to distant stars is easier and cheaper than previously thought. This dramatically reduces the cost of potential interstellar transmissions, such as searched for by SETI.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>