Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERS-2 has ringside view of Hurricane Wilma’s violent winds

25.10.2005


As Hurricane Wilma barrels towards the Florida coast, a last-minute acquisition by a unique instrument aboard ERS-2 is helping strengthen weather forecasters’ final predictions of its future course and strength.



The ERS-2 radar scatterometer data shown here was acquired by the satellite on 04:30 UTC this morning (06:30 CEST), then relayed via the ground station of the Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) at the University of Miami to be speedily processed by the Royal Netherlands Meteorological Institute (KNMI), being made available to forecasters to analyse within the hour.

"ERS scatterometer data are very useful to correct position and strength of tropical cyclones in numerical weather analyses and prediction," said Ad Stoffelen of the KNMI. "For its application one must note that each scatterometer wind is measured in a wind cell of about 50 by 50 km.


"For this case the maximum mean wind measured over such extended area is about 100km/hour. Given a tropical cyclone model, meteorologists know that local sustained winds are typically 50% larger, and gusts may reach speeds even three times larger."

Dr Hans C. Grabar of CSTARS added that as Wilma has yet to make landfall, the scatterometer data would be swiftly passed to the US National Hurricane Center "which will aid in their advisories setting marine conditions and predicting the strength of winds at landfall".

The payload of ERS-2 – ESA’s veteran Earth Observation satellite launched back in 1995 - includes the only radar scatterometer currently flying capable of peering through the thick clouds and rain swirling around Wilma to chart the underlying wind fields powering the storm.

This instrument works by firing a trio of high-frequency radar beams down to the ocean, then analysing the pattern of backscatter reflected up again. Wind-driven ripples on the ocean surface modify the radar backscatter, and as the energy in these ripples increases with wind velocity, so backscatter increases as well. Scatterometer results enable measurements of not only wind speed but also direction across the water surface.

What makes ERS-2’s scatterometer especially valuable is that its C-band radar frequency is almost unaffected by heavy rain, so it can return useful wind data even from the heart of the fiercest storms – and is the sole scatterometer of this type currently in orbit.

As well as being processed by KMNI, scatterometer data are also routinely assimilated by the European Centre for Medium-Range Weather Forecasting (ECMWF) into their advanced numerical models used for meteorological predictions.

Wilma struck the Mexican coast on Friday, but dampened down from a Category Four storm on the Saffir-Simpson Hurricane Scale down to a Category Two. Back over the open sea, the storm strengthened and sped up to a Category Three.

ESA’s scatterometer future

To maintain future continuity of scatterometer coverage, a new more advanced scatterometer instrument called ASCAT is part of the payload for ESA’s MetOp mission, currently due to launch in 2006.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMBWW3J2FE_planet_0.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>