Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakup of glaciers raising sea level concern

21.10.2005


The rapid structural breakdown of some important parts of the ice sheets on Greenland and Antarctica is possible, has happened in the distant past, and some "startling changes" on the margin of these ice masses has been observed in recent years – raising disturbing concerns about sea level rise.



In a new report to be released Friday in the journal Science, researchers from Oregon State University and four other institutions in the U.S. and Europe outline dynamic mechanisms of glacial change that appear to be under way, could significantly speed up the melting of major ice sheets, and have not been considered in current projections for sea level rise.

A possibility, scientists say, is that the melting and collapse of floating ice shelves near the coasts of Greenland and Antarctica will continue and in the process destabilize the ice sheets behind them. This could cause a much more rapid flow of ice to the sea and lead to melting events that transcend those now anticipated due to global warming. Based on this, the researchers say that current projections of sea level rise should be considered a minimum to expect, and the levels could be much higher and happen more quickly.


"Most of the sea level rise we’re now expecting in the next 200 years is due to thermal expansion of water, not the overall loss of ice from Greenland and Antarctica," said Peter Clark, a professor of geosciences at OSU. "But recent events we’ve studied with improved observational systems and computer modeling suggest there may be much more going on."

"We may be more vulnerable to sea level rise than we thought and it may be more rapid than we have anticipated," Clark said. "This is an issue we should take very seriously."

Although they are learning a great deal more about the mechanisms that may lead to more rapid glacial collapse, the scientists cannot yet predict with certainty whether or how fast it might happen, or what the resulting sea level rise may be.

In one event about 14,600 years ago, Earth’s sea level rose about 70 feet in less than 500 years – 20 times faster than the current rate of sea level rise. However, climatic conditions then may have been considerably different than today, and that event may not provide an exact analog to what we might expect from current glacial melting events, Clark said. Nevertheless, that event illustrates the potential for existing ice sheets to cause sea level to rise rapidly, he said.

Current projections in climate models suggest that global warming will cause some melting of glacial ice in Greenland in the next century or two, but that may be largely offset by increased precipitation and glacial buildup in Antarctica. During that period, thermal warming of the Earth’s oceans is expected to increase sea level by about one-half meter, Clark said. The breakdown of glaciers currently being studied could double the sea level rise to a full meter, he said.

Even more problems are anticipated later on. The Greenland ice sheet may disappear within about 1,000 years, raising Earth’s sea level by about 20 feet, and the glacial breakdown mechanisms being studied could speed that up considerably.

What has caught the attention of scientists in recent years is the rapid collapse of some glaciers near the coasts of Greenland and Antarctica.

Jakobshavn glacier in Greenland nearly doubled its flow speed in the past decade. Along the Antarctic Peninsula, warming over the past few decades has caused retreat or near-total loss of several ice shelves, some of which had existed for thousands of years - and surface melting cannot explain most of the losses. In 2002 the Larsen B Ice Shelf in Antarctica collapsed, and major tributary glaciers entering the former ice shelf began to move 2-8 times faster than they had previously. Also in Antarctica, large glaciers feeding the Amundsen Coast thinned and accelerated by up to 26 percent over the last three decades, with repercussions more than 120 miles inland.

It’s become clear, Clark said, that the West Antarctic Ice Sheet, much of which sits on land that’s actually below sea level, is one of the most vulnerable in the world to these types of rapid breakdowns. If it were to melt, that would add another 20 feet to global sea levels.

In future modeling of potential sea level rise, the researchers said in their report, it’s essential that the mechanisms for breakup of major ice sheets in Greenland and Antarctica be more carefully considered in the projections. If these mechanisms continue and prove to be significant, sea level projections will have to be revised upward, the scientists said.

Other collaborators on this study were from Pennsylvania State University, the University of Washington, and institutes or universities in Germany and Belgium.

"The events that have happened so far are pretty small, compared to what we’re concerned about," Clark said. "The real problem would occur if these smaller glacial breakups trigger larger ones, and rising sea levels by themselves might cause a feedback mechanism which would further speed up the process."

Peter Clark | EurekAlert!
Further information:
http://www.geo.orst.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>