Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakup of glaciers raising sea level concern

21.10.2005


The rapid structural breakdown of some important parts of the ice sheets on Greenland and Antarctica is possible, has happened in the distant past, and some "startling changes" on the margin of these ice masses has been observed in recent years – raising disturbing concerns about sea level rise.



In a new report to be released Friday in the journal Science, researchers from Oregon State University and four other institutions in the U.S. and Europe outline dynamic mechanisms of glacial change that appear to be under way, could significantly speed up the melting of major ice sheets, and have not been considered in current projections for sea level rise.

A possibility, scientists say, is that the melting and collapse of floating ice shelves near the coasts of Greenland and Antarctica will continue and in the process destabilize the ice sheets behind them. This could cause a much more rapid flow of ice to the sea and lead to melting events that transcend those now anticipated due to global warming. Based on this, the researchers say that current projections of sea level rise should be considered a minimum to expect, and the levels could be much higher and happen more quickly.


"Most of the sea level rise we’re now expecting in the next 200 years is due to thermal expansion of water, not the overall loss of ice from Greenland and Antarctica," said Peter Clark, a professor of geosciences at OSU. "But recent events we’ve studied with improved observational systems and computer modeling suggest there may be much more going on."

"We may be more vulnerable to sea level rise than we thought and it may be more rapid than we have anticipated," Clark said. "This is an issue we should take very seriously."

Although they are learning a great deal more about the mechanisms that may lead to more rapid glacial collapse, the scientists cannot yet predict with certainty whether or how fast it might happen, or what the resulting sea level rise may be.

In one event about 14,600 years ago, Earth’s sea level rose about 70 feet in less than 500 years – 20 times faster than the current rate of sea level rise. However, climatic conditions then may have been considerably different than today, and that event may not provide an exact analog to what we might expect from current glacial melting events, Clark said. Nevertheless, that event illustrates the potential for existing ice sheets to cause sea level to rise rapidly, he said.

Current projections in climate models suggest that global warming will cause some melting of glacial ice in Greenland in the next century or two, but that may be largely offset by increased precipitation and glacial buildup in Antarctica. During that period, thermal warming of the Earth’s oceans is expected to increase sea level by about one-half meter, Clark said. The breakdown of glaciers currently being studied could double the sea level rise to a full meter, he said.

Even more problems are anticipated later on. The Greenland ice sheet may disappear within about 1,000 years, raising Earth’s sea level by about 20 feet, and the glacial breakdown mechanisms being studied could speed that up considerably.

What has caught the attention of scientists in recent years is the rapid collapse of some glaciers near the coasts of Greenland and Antarctica.

Jakobshavn glacier in Greenland nearly doubled its flow speed in the past decade. Along the Antarctic Peninsula, warming over the past few decades has caused retreat or near-total loss of several ice shelves, some of which had existed for thousands of years - and surface melting cannot explain most of the losses. In 2002 the Larsen B Ice Shelf in Antarctica collapsed, and major tributary glaciers entering the former ice shelf began to move 2-8 times faster than they had previously. Also in Antarctica, large glaciers feeding the Amundsen Coast thinned and accelerated by up to 26 percent over the last three decades, with repercussions more than 120 miles inland.

It’s become clear, Clark said, that the West Antarctic Ice Sheet, much of which sits on land that’s actually below sea level, is one of the most vulnerable in the world to these types of rapid breakdowns. If it were to melt, that would add another 20 feet to global sea levels.

In future modeling of potential sea level rise, the researchers said in their report, it’s essential that the mechanisms for breakup of major ice sheets in Greenland and Antarctica be more carefully considered in the projections. If these mechanisms continue and prove to be significant, sea level projections will have to be revised upward, the scientists said.

Other collaborators on this study were from Pennsylvania State University, the University of Washington, and institutes or universities in Germany and Belgium.

"The events that have happened so far are pretty small, compared to what we’re concerned about," Clark said. "The real problem would occur if these smaller glacial breakups trigger larger ones, and rising sea levels by themselves might cause a feedback mechanism which would further speed up the process."

Peter Clark | EurekAlert!
Further information:
http://www.geo.orst.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>