Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recent landslides in La Conchita, California belong to much larger prehistoric slide

20.10.2005


The deadly landslide that killed 10 people and destroyed approximately 30 homes in La Conchita, California last January is but a tiny part of a much larger slide, called the Rincon Mountain slide, discovered by Larry D. Gurrola, geologist and graduate student at the University of California, Santa Barbara. The slide started many thousands of years ago and will continue generating slides in the future, reported Gurrola at the national meeting of the Geological Society of America today in Salt Lake City.



Prehistoric slides present at Rincon Mountain cover an area of about 1,300 acres with a minimum volume of about 600 million cubic yards, said Edward A. Keller, professor of earth science at UC Santa Barbara. Keller analyzed the landslide complex with Gurrola and Tim Tierney, UCSB research scientist. Geological consultant Ted Powers also contributed. The La Conchita landslides that occurred in 1995 and 2005 form only a small percent of a much larger landslide complex, according to the geologists. These recent landslides spilled over U.S. Highway 101 in the Ventura County community that is located 25 miles south of Santa Barbara.

"The slope that failed in 1995 and 2005 is a holocene paleosea cliff and is near the seaward edge of an ancient landslide that has produced prehistoric and historic slides, slumps, debris and mud flows," said Gurrola. "The question is not if but when the next landslide will impact the community of La Conchita. A combination of factors makes future landslides inevitable. These are: active faulting and folding; rapid tectonic uplift; very weak rocks; steep topography; and, the presence of springs."


Keller and Gurrola explained that the triggering mechanism for debris flows and mud flows appears to be prolonged, intense precipitation. The larger, complex slides may increase in activity months or even years after wet years and infiltration of rainwater to the subsurface environment. An earthquake could also trigger a slide.

"Landslides similar or larger than the 1995 and 2005 events may occur next year or in coming decades, during or shortly after intense rain," said Gurrola. "People tend to have short memories when it comes to geologic hazards such as landslides. If people continue to live in La Conchita, more lives will be lost in the future and this is unacceptable."

Keller and Gurrola urged that property owners be fairly compensated for their property, and proposed that the site of La Conchita be made into a beach park. "For this to happen will take a significant community fund-raising effort with assistance at local, state and national levels in cooperation with organizations such as the Land Trust Alliance," said Keller.

He mentioned that a warning system of sensors to detect slope movement was installed in the slope following the slide of 1995. "However, the 2005 slide evidently started above these sensors or the slide was too fast for a warning," said Keller. "In hindsight, notice of the duration and intensity of rainfall might have been helpful in providing a warning, but additional research would be necessary to test this hypothesis. We do have ’Red Flag’ day warnings in Southern California for wildfire, based on air temperature and wind pattern. Perhaps the same could be done for La Conchita, if people insist on living there. A combination of instruments to detect movement with assessment of rainfall might be the best approach."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>