Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain winds may create atmospheric hotspots

19.10.2005


Rapidly fluctuating wind gusts blowing over mountains and hills can create "hotspots" high in the atmosphere and significantly affect regional air temperatures. A research paper to be published this month in the Journal of Geophysical Research-Space Physics reports that the actions of such winds can create high-frequency acoustic waves and could stimulate a 1000-Kelvin [1,000-degree Celsius; 2,000-degree Fahrenheit]spike in a short period of time in the thermosphere, at an altitude of 200-300 kilometers [100-200 miles]. Such exceptional temperature increases would require continuous waves, and the heating rate would likely be diminished with intermittent winds.



Richard Walterscheid and Michael Hickey used a theoretical model of the interaction between rough terrain and wind eddies to suggest that high winds may represent a previously unknown source of acoustic waves in the environment. Ocean waves and earthquakes are known to produce similar waves, which strengthen as they propagate higher in the atmosphere. The authors speculate that the waves can heat the atmosphere at prodigious rates and could account for a large part of the unusual and unexplained high-altitude background heating seen above the mountainous landscape in parts of South America.

"We show that that the acoustic waves generated by gusty flow over rough terrain might be a significant source of heating in the upper atmosphere," Hickey says. "These mysterious so-called ’hotspots’ observed above the Andes Mountains could be explained by such acoustic wave heating."


Previous observations near the Andes Mountains in Peru had found that the atmosphere directly above some peaks was approximately 100 Kelvin [100 degrees Celsius; 200 degrees Fahrenheit] hotter than in nearby regions and that the difference occasionally reached as much as 400 Kelvin [400 degrees Celsius; 700 degrees Fahrenheit]. Other research had recorded similar effects near the Rocky Mountains in Colorado. After comparing simulations of atmospheric gravity waves and acoustic waves, the researchers found that the acoustic waves reached higher altitudes than the gravity waves, leading them to speculate that the acoustic waves constituted a far more plausible source of the observed hot spots. They then identified wind fluctuations as the most likely source of the heating, noting that the upwind waves could only be generated by unsteady wind flow.

They cite further evidence indicating that the high- frequency acoustic waves in the thermosphere originated from the ground, including proof that nighttime atmospheric motion (convection) is not a plausible source of the persistent heating. In addition, they note that only high-frequency acoustic waves could cause the thermospheric heating, as the slower-speed gravity waves are not fast enough to reach the higher altitudes and therefore could not produce the substantial effects at that height in the atmosphere.

The paper indicates that moderately strong winds, reaching speeds of approximately 10 meters [30 feet] per second, can generate wave amplitudes of nearly four meters [10 feet] per second above rough terrain. In addition, the authors found that steeply sloping terrain further enhanced the waves, which are generated by rapid variations in the up-and-down turbulence in the air. Wider hills and those spaced further apart can also have a similar wave- generating effect, but the authors found that the wind effects typically do not propagate vertically near isolated hills as they do around rougher terrain.

The researchers note that there are very few detailed field studies of the wind field over hills at present. They report, however, that models and previous research indicates that even weak interactions from acoustic waves can produce significant effects in the thermosphere.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>