Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech geoscientists resolve inconsistent data on crystal growth, dissolution

18.10.2005


Virginia Tech Geoscientists Patricia Dove and Nizhou Han have demonstrated that crystals dissolve and grow by the same set of analogous ’reversed’ mechanisms. Previously, the scientific community had long-maintained that growth and dissolution could not be unified into a single framework of understanding. The new evidence is certain to overturn that perception.



Dove, Han, and James J. De Yoreo of Lawrence Livermore National Laboratory report their research in the Oct. 17 - 21 Early Edition of the Proceedings of the National Academy of Sciences (Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior)

"We call this the Eureka paper," explained Dove. "For more than a decade, our group has been studying how minerals and crystals dissolve while also collaborating with Jim De Yoreo on how organisms grow crystals and minerals into complex shapes such as seashells and bone." It was because of the unique intersection of these two research areas in our laboratory that we were able to establish this fundamental link."


One of the most convincing indications that this paper is onto something quite profound is that the researchers’ approach reconciles inconsistencies between two pre-existing data sets for kaolinite, according to reviewer Bruce Watson, professor of geochemistry at Rensselaer Polytechnic Institute.

Kaolinite is a major earth and industrial material. The researchers show evidence for why their approach is likely to prove applicable to many different kinds of natural and manufactured crystals.

The essential idea is intuitive and elegant with profound implications for all disciplines where crystal dissolution is important, Watson wrote.

In addition to deep scientific questions regarding how fast minerals dissolve over geologic time, the findings will also give new insights for understanding such diverse questions as the long-term durability of containers that will hold nuclear waste, lifetimes of artificial bone materials, and possibly other biomedical issues, including drug delivery, Dove said.

"Dr. Dove’s findings offer a good unifying approach for explaining crystal and mineral dissolution and growth," said James Mitchell, National Academy of Sciences member and professor emeritus of civil and environmental engineering at Virginia Tech. "It offers a new view that is consistent with the data. After you read it, you say, ’Why didn’t I think of that.’" But it is an approach that classical geochemists have not used before, he said.

Dove and her research group won the Department of Energy Best University Research Award when she presented these findings at the symposium on "Isotope and Analytical Geochemistry" in June in Gaithersburg, Md. She is the only two-time winner of this DOE recognition, having also received this award in 1999 at the "Interfacial Processes in Geosciences" symposium at Pacific Northwest National Lab in 1999.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geos.vt.edu/people/user_detail.php?department_id=1&user_id=2

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>