Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Researchers Rediscover Elusive Site of Exploding Volcanic Rocks

17.10.2005



’Popping rocks’ found in deep sea give researchers clues about rare gases from ’young’ seafloor volcano

Scientists aboard the Scripps research vessel Roger Revelle this week solved a 45-year-old geological mystery.

In 1960, Scripps oceanographer Dale Krause reported the discovery of extraordinary deep-sea volcanic rocks in waters off Mexico, near Guadalupe Island, approximately 200 miles south of San Diego. When brought to the surface, the rocks spontaneously exploded "with a sharp snapping sound," according to Krause.



Since then, only a few other sites, mostly along the Mid-Atlantic Ridge, have been reported with similar "popping rocks." An attempt by the late Scripps Professor Harmon Craig to locate the site in 1984 proved unsuccessful, largely because the location of the original discovery lacked the precision of today’s navigational technologies.

A team of U.S. and Mexican geologists and student researchers aboard the Oct. 5th to 10th Revelle expedition explored the region, including the area now known as Popcorn Ridge, in an attempt to precisely locate the source of Krause’s popping rocks and the unique information these rocks could provide about important Earth processes.

Three dredge hauls of Popcorn Ridge on Oct. 7 recovered some volcanic rocks, though none "popped" on deck. A sonar survey of the seafloor revealed a small mound, which was later identified as a volcano, at the base of Popcorn Ridge, 3,200 meters (10,500 feet) below sea level. On Sunday, Oct. 9, the researchers hit the jackpot with ’D-11,’ or the 11th area dredged during the expedition. D-11 is located along the flank of what the scientists are now calling "Krause Volcano."

"As soon as we took the rocks out of the water we could hear them popping, much like a firecracker," said Barry Eakins, a post-doctoral researcher at Scripps and one of the chief scientists on the cruise. "We were very excited because we knew this was a big find."

Eakins and co-chief scientist Dana Vukajlovich, a Scripps graduate student, say the loud popping sounds are due to high concentrations of volcanic gases trapped in bubbles within the lava rocks that explode when they escape the confining water pressure of the deep ocean floor. The scientists consider the rediscovery an important achievement because it will give them the opportunity to study these rare rocks in their Scripps laboratories and to compare them with the popping rocks from the Mid-Atlantic Ridge. It also allows other scientists to return to the site, since the precise, GPS-marked location is now known.

Vukajlovich says that the rocks are important because the volcanic gases (such as carbon dioxide, water vapor, helium and argon) that are trapped in the bubbles did not escape during eruption and therefore should represent the concentrations of these gases in Earth’s mantle. Eakins believes the rocks will not only give researchers more information about the inventory of these gases within Earth, but also help them better understand the origin and history of Earth’s atmosphere. "We expect that these rocks will be the source of research for decades," Eakins said.

The rediscovery also will provide new information about seafloor volcanoes. The researchers characterized Krause Volcano that provided the popping rocks as very young—from decades to a few centuries old—which is a rare find.

"There are lots of volcanoes on the seafloor but most are quite old," said Vukajlovich. "It’s exciting to find one that may be very, very young and possibly still active."

According to Scripps Professor Peter Lonsdale, detailed analyses of the gas chemistry and isotopic composition by Vukajlovich and others in Scripps labs will provide important information about the composition and origin of the mantle beneath oceanic crust.

The Revelle cruise was funded by the University of California Ship Funds Panel of the Marine Operations Committee.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>