Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Researchers Rediscover Elusive Site of Exploding Volcanic Rocks

17.10.2005



’Popping rocks’ found in deep sea give researchers clues about rare gases from ’young’ seafloor volcano

Scientists aboard the Scripps research vessel Roger Revelle this week solved a 45-year-old geological mystery.

In 1960, Scripps oceanographer Dale Krause reported the discovery of extraordinary deep-sea volcanic rocks in waters off Mexico, near Guadalupe Island, approximately 200 miles south of San Diego. When brought to the surface, the rocks spontaneously exploded "with a sharp snapping sound," according to Krause.



Since then, only a few other sites, mostly along the Mid-Atlantic Ridge, have been reported with similar "popping rocks." An attempt by the late Scripps Professor Harmon Craig to locate the site in 1984 proved unsuccessful, largely because the location of the original discovery lacked the precision of today’s navigational technologies.

A team of U.S. and Mexican geologists and student researchers aboard the Oct. 5th to 10th Revelle expedition explored the region, including the area now known as Popcorn Ridge, in an attempt to precisely locate the source of Krause’s popping rocks and the unique information these rocks could provide about important Earth processes.

Three dredge hauls of Popcorn Ridge on Oct. 7 recovered some volcanic rocks, though none "popped" on deck. A sonar survey of the seafloor revealed a small mound, which was later identified as a volcano, at the base of Popcorn Ridge, 3,200 meters (10,500 feet) below sea level. On Sunday, Oct. 9, the researchers hit the jackpot with ’D-11,’ or the 11th area dredged during the expedition. D-11 is located along the flank of what the scientists are now calling "Krause Volcano."

"As soon as we took the rocks out of the water we could hear them popping, much like a firecracker," said Barry Eakins, a post-doctoral researcher at Scripps and one of the chief scientists on the cruise. "We were very excited because we knew this was a big find."

Eakins and co-chief scientist Dana Vukajlovich, a Scripps graduate student, say the loud popping sounds are due to high concentrations of volcanic gases trapped in bubbles within the lava rocks that explode when they escape the confining water pressure of the deep ocean floor. The scientists consider the rediscovery an important achievement because it will give them the opportunity to study these rare rocks in their Scripps laboratories and to compare them with the popping rocks from the Mid-Atlantic Ridge. It also allows other scientists to return to the site, since the precise, GPS-marked location is now known.

Vukajlovich says that the rocks are important because the volcanic gases (such as carbon dioxide, water vapor, helium and argon) that are trapped in the bubbles did not escape during eruption and therefore should represent the concentrations of these gases in Earth’s mantle. Eakins believes the rocks will not only give researchers more information about the inventory of these gases within Earth, but also help them better understand the origin and history of Earth’s atmosphere. "We expect that these rocks will be the source of research for decades," Eakins said.

The rediscovery also will provide new information about seafloor volcanoes. The researchers characterized Krause Volcano that provided the popping rocks as very young—from decades to a few centuries old—which is a rare find.

"There are lots of volcanoes on the seafloor but most are quite old," said Vukajlovich. "It’s exciting to find one that may be very, very young and possibly still active."

According to Scripps Professor Peter Lonsdale, detailed analyses of the gas chemistry and isotopic composition by Vukajlovich and others in Scripps labs will provide important information about the composition and origin of the mantle beneath oceanic crust.

The Revelle cruise was funded by the University of California Ship Funds Panel of the Marine Operations Committee.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>