Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revival Of The Clay Jug Method

17.10.2005


A long time ago, people inhabiting settlements at the boarder of Dykoye Pole (Wild Field) used to bury empty jugs into the ground: if they started buzzing this meant that a cavalry detachment was galloping across the steppe and it was time to escape to the outpost from the foray. Specialists of the Institute of Physics of the Earth, Russian Academy of Sciences, suggest a similar way for tracking oncoming natural disasters like earthquakes or catastrophic landslides.



“The main task of the forecast is to get a reliable warning about the time and place of a destructive event. The task can be simplified if the long-term observation location is chosen in advance – in that case the major effort can be focused on determination of time of disaster in that particular region. To this end, it is necessary to deploy the observation network within the bounds of a big town or in the vicinity of particularly important objects,” says Alexy Nikolayev, Corresponding Member of the Russian Academy of Sciences. One of the observation methods applied may be the measurement of noise which occurs in the the interior of the Earth.

The history of the method dates back to slightly more than a century. In any case, at the end of the 19th century, De Rossi from Rome installed a microphone at the depth of 20 meters and discovered a multitude of various sounds. Sometimes they became unbearably loud, especially once, half an hour prior to an earthquake. Back in the 50s of the last century, Professor Rikitake from the Tokyo Earthquake Research Institute came to the conclusion that investigation of vibrations in the audio-frequency range might be useful for disaster forecasting. In Russia, research of the “Earth’s voice” started twenty years ago. In 1999-2000, researchers placed sensors in Obninsk, Kislovodsk and Petropavlovsk-Kamchatski, the sensors being installed in deep boreholes (about one hundred meters deep), and since that time they have been accumulating statistics in order to later correlate parameters of sounds heard with certain events. Sometimes they manage to do that. Thus, the sensors in Kislovodsk proved that the noise produced by the interior of the Earth was evidently louder during massive bombing of Iraq in March 2003 than that after downfall of Bagdad and the campaign termination.


It has turned out that the sound in the earth’s crust is capable of passing enormous distances and informing about catastrophes that happened thousand of kilometers away. For example, at night of 16/17 February 1998, the “Moskva”seismic station (geophysical service of the Russian Academy of Sciences) recorded the sound of a powerful earthquake that had occurred in the North of the Atlantic Ocean. ‘It is amazing that sensors managed to hear such a signal in a megapolis where the noise is very intense anyway, says A.V. Nikolayev. We have only to regret that subterranean background noise research has not achieved adequate development for a long time”. The situation is being improved both by new devices for audio signal recording and visualization, and constant measurements of the sound which started in 2000. Concurrent accumulation of data in the areas of high seismicity (Kislovodsk) and of low seismicity (Obninsk) allow to discover synchronous variations of audio parameters and to determine their correlation with seismic activity.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>