Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revival Of The Clay Jug Method

17.10.2005


A long time ago, people inhabiting settlements at the boarder of Dykoye Pole (Wild Field) used to bury empty jugs into the ground: if they started buzzing this meant that a cavalry detachment was galloping across the steppe and it was time to escape to the outpost from the foray. Specialists of the Institute of Physics of the Earth, Russian Academy of Sciences, suggest a similar way for tracking oncoming natural disasters like earthquakes or catastrophic landslides.



“The main task of the forecast is to get a reliable warning about the time and place of a destructive event. The task can be simplified if the long-term observation location is chosen in advance – in that case the major effort can be focused on determination of time of disaster in that particular region. To this end, it is necessary to deploy the observation network within the bounds of a big town or in the vicinity of particularly important objects,” says Alexy Nikolayev, Corresponding Member of the Russian Academy of Sciences. One of the observation methods applied may be the measurement of noise which occurs in the the interior of the Earth.

The history of the method dates back to slightly more than a century. In any case, at the end of the 19th century, De Rossi from Rome installed a microphone at the depth of 20 meters and discovered a multitude of various sounds. Sometimes they became unbearably loud, especially once, half an hour prior to an earthquake. Back in the 50s of the last century, Professor Rikitake from the Tokyo Earthquake Research Institute came to the conclusion that investigation of vibrations in the audio-frequency range might be useful for disaster forecasting. In Russia, research of the “Earth’s voice” started twenty years ago. In 1999-2000, researchers placed sensors in Obninsk, Kislovodsk and Petropavlovsk-Kamchatski, the sensors being installed in deep boreholes (about one hundred meters deep), and since that time they have been accumulating statistics in order to later correlate parameters of sounds heard with certain events. Sometimes they manage to do that. Thus, the sensors in Kislovodsk proved that the noise produced by the interior of the Earth was evidently louder during massive bombing of Iraq in March 2003 than that after downfall of Bagdad and the campaign termination.


It has turned out that the sound in the earth’s crust is capable of passing enormous distances and informing about catastrophes that happened thousand of kilometers away. For example, at night of 16/17 February 1998, the “Moskva”seismic station (geophysical service of the Russian Academy of Sciences) recorded the sound of a powerful earthquake that had occurred in the North of the Atlantic Ocean. ‘It is amazing that sensors managed to hear such a signal in a megapolis where the noise is very intense anyway, says A.V. Nikolayev. We have only to regret that subterranean background noise research has not achieved adequate development for a long time”. The situation is being improved both by new devices for audio signal recording and visualization, and constant measurements of the sound which started in 2000. Concurrent accumulation of data in the areas of high seismicity (Kislovodsk) and of low seismicity (Obninsk) allow to discover synchronous variations of audio parameters and to determine their correlation with seismic activity.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>