Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bubbles a storehouse of knowledge

13.10.2005


Fluid inclusions – tiny bubbles of fluid or vapor trapped inside rock as it forms – are clues to the location of ores and even petroleum; and they are time capsules that contain insights on the power of volcanoes and hints of life in the universe.



But the realization of the scientific value of fluid inclusions is relatively recent. At the Centennial Celebration Symposia for the Society of Economic Geologists, Virginia Tech Distinguished Professor of Geosciences Robert Bodnar will review the history of the scientific uses of fluid inclusion, identify the big questions that remain to be addressed, and predict the state of the field in 10, 50, and 100 years.

The symposium is Saturday, Oct. 15, during the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19. The society has asked the world’s experts in areas of economic geology to give talks summarizing the state of their fields. As the Society of Economic Geology Distinguished Lecturer, Bodnar was asked to give the keynote address.


The title of his paper is "Fluid inclusions, from H.C. Sorby to Edwin Roedder and Beyond."

Fluid inclusions were considered curiosities until Sorby saw the mineral-incased bubbles as clues to processes that create rocks and minerals. Sorby, a pioneer in the use of the microscope to examine rocks, was the first to describe inclusions from a scientific perspective. In 1858, he used them to determine the temperature and pressure at the time the rock was formed.

"Not much else was done until Ed Roedder applied inclusions to wide range of geological problems," Bodnar said. Roedder showed that inclusions could be tapped to determine the pressure and temperature at the time of formation. Roedder’s definitive book, Fluid Inclusions (1984), described what fluid inclusions are and how they can be used. Now 86 and still active, Roedder was Bodnar’s mentor at the U.S. Geological Survey and continues to provide valuable advice and support today.

Fluid inclusions are a timely topic. They are used by the oil industry to predict where oil deposits have occurred and to track where oil has flowed through the subsurface in order to discover new fields. Chevron hired Fang Lin, one of Bodnar’s recent PhD students, to help with exploration because of her experience with fluid inclusions.

But fluid inclusions are really most valuable to exploration for metal deposits, such as copper, gold, and lead. Certain types of fluid inclusions are located with certain types of ore.

"We slice the rock, and if you see inclusions with certain characteristics, it tells us what we are likely to find," Bodnar said. Which leads to the questions that remain to be addressed. "The biggest uncertainties are how long it takes for an ore or petroleum deposit to form," Bodnar said. "Does it take hundreds of years, thousands of years, or millions of years?

"We know how long some processes are active. We know some metal deposits formed in an environment similar to an active volcano. Two or three miles under Mount St. Helens is the kind of environment where copper deposits form," Bodnar said. "The Bingham Canyon Mine, one of the world’s largest surface mines, was once under a volcano."

But how does ore form in the volcano? "Volcanoes can be dormant hundreds or thousands of years. Mount St. Helens has been active only a few months in the last 25 years, for example," Bodnar said.

He is part of a group that is studying Mt. Vesuvius. "Written records that go back thousands of years provide a historical record regarding when eruptions occurred, how long they lasted, and how long the volcano was dormant. We are able to extract fluid from the inclusions and use isotope techniques to determine the age when it was trapped," Bodnar said. "We can compare that with the written records and then know what the volcano was doing as the ore formed.

"The better we understand how deposits form, the better able we will be to develop techniques to look for new deposits. There are millions of old, dead volcano sites. They didn’t all form ore deposits. The inclusions from the ones that did will tell us what to look for," Bodnar said.

But his favorite future use of fluid inclusions is to study the universe. The rock-bound bubbles are clues to whether there was once water, and possibly life, among the stars. "If we have rock samples from Mars and we find inclusions with water, it increases the chances that there could have been some form of life," Bodnar said. Fluid inclusions will be an important tool to study meteorites and rocks from the moon, asteroids, and the planets we will visit to look for evidence of water and the possibility of life."

Bodnar will present his talk at 4 p.m. Saturday, October 15, as part of the Centennial Celebration Symposia for the Society of Economic Geologists in the Salt Palace Convention Center, room 250 AB.

Virginia Tech faculty members and students are presenting more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/research/fluidslab/

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>