Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bubbles a storehouse of knowledge

13.10.2005


Fluid inclusions – tiny bubbles of fluid or vapor trapped inside rock as it forms – are clues to the location of ores and even petroleum; and they are time capsules that contain insights on the power of volcanoes and hints of life in the universe.



But the realization of the scientific value of fluid inclusions is relatively recent. At the Centennial Celebration Symposia for the Society of Economic Geologists, Virginia Tech Distinguished Professor of Geosciences Robert Bodnar will review the history of the scientific uses of fluid inclusion, identify the big questions that remain to be addressed, and predict the state of the field in 10, 50, and 100 years.

The symposium is Saturday, Oct. 15, during the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19. The society has asked the world’s experts in areas of economic geology to give talks summarizing the state of their fields. As the Society of Economic Geology Distinguished Lecturer, Bodnar was asked to give the keynote address.


The title of his paper is "Fluid inclusions, from H.C. Sorby to Edwin Roedder and Beyond."

Fluid inclusions were considered curiosities until Sorby saw the mineral-incased bubbles as clues to processes that create rocks and minerals. Sorby, a pioneer in the use of the microscope to examine rocks, was the first to describe inclusions from a scientific perspective. In 1858, he used them to determine the temperature and pressure at the time the rock was formed.

"Not much else was done until Ed Roedder applied inclusions to wide range of geological problems," Bodnar said. Roedder showed that inclusions could be tapped to determine the pressure and temperature at the time of formation. Roedder’s definitive book, Fluid Inclusions (1984), described what fluid inclusions are and how they can be used. Now 86 and still active, Roedder was Bodnar’s mentor at the U.S. Geological Survey and continues to provide valuable advice and support today.

Fluid inclusions are a timely topic. They are used by the oil industry to predict where oil deposits have occurred and to track where oil has flowed through the subsurface in order to discover new fields. Chevron hired Fang Lin, one of Bodnar’s recent PhD students, to help with exploration because of her experience with fluid inclusions.

But fluid inclusions are really most valuable to exploration for metal deposits, such as copper, gold, and lead. Certain types of fluid inclusions are located with certain types of ore.

"We slice the rock, and if you see inclusions with certain characteristics, it tells us what we are likely to find," Bodnar said. Which leads to the questions that remain to be addressed. "The biggest uncertainties are how long it takes for an ore or petroleum deposit to form," Bodnar said. "Does it take hundreds of years, thousands of years, or millions of years?

"We know how long some processes are active. We know some metal deposits formed in an environment similar to an active volcano. Two or three miles under Mount St. Helens is the kind of environment where copper deposits form," Bodnar said. "The Bingham Canyon Mine, one of the world’s largest surface mines, was once under a volcano."

But how does ore form in the volcano? "Volcanoes can be dormant hundreds or thousands of years. Mount St. Helens has been active only a few months in the last 25 years, for example," Bodnar said.

He is part of a group that is studying Mt. Vesuvius. "Written records that go back thousands of years provide a historical record regarding when eruptions occurred, how long they lasted, and how long the volcano was dormant. We are able to extract fluid from the inclusions and use isotope techniques to determine the age when it was trapped," Bodnar said. "We can compare that with the written records and then know what the volcano was doing as the ore formed.

"The better we understand how deposits form, the better able we will be to develop techniques to look for new deposits. There are millions of old, dead volcano sites. They didn’t all form ore deposits. The inclusions from the ones that did will tell us what to look for," Bodnar said.

But his favorite future use of fluid inclusions is to study the universe. The rock-bound bubbles are clues to whether there was once water, and possibly life, among the stars. "If we have rock samples from Mars and we find inclusions with water, it increases the chances that there could have been some form of life," Bodnar said. Fluid inclusions will be an important tool to study meteorites and rocks from the moon, asteroids, and the planets we will visit to look for evidence of water and the possibility of life."

Bodnar will present his talk at 4 p.m. Saturday, October 15, as part of the Centennial Celebration Symposia for the Society of Economic Geologists in the Salt Palace Convention Center, room 250 AB.

Virginia Tech faculty members and students are presenting more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/research/fluidslab/

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>