Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protocol tracks how land use influences the way streams work

13.10.2005


Virginia Tech biology researchers have applied tools from geology, geography, and hydrologic modeling to determine the effect of different land uses on stream quality across 10 watersheds of the French Broad River in the North Carolina mountains. The result is a new protocol for determining the health or condition of huge land-water systems. The research has also resulted in a set of tools for predicting the effect of development decisions in the watersheds studied, which are near Ashville, N.C.

Biology professor Maury Valett, recent doctoral graduate Chris Burcher, and biology professor Fred Benfield will present their research at the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19.

Valett and Burcher use the "domino effect" as an analogy to describe their research process. "When you knock down a string of dominos, the first one is the stimulus and the last one to fall is the response," said Valett. "We are looking at all the important entities in between." The stimuli include such land uses as parking lots, farms, and urban development. The entities are components of stream – land ecosystems.



The scientific term is "path analysis" and it is a statistical process more often used in social sciences than physical sciences, Burcher said. But he found it a valuable approach for accounting for the multiple influences of different land uses on how disturbance is translated across landscapes. "The ’land-cover cascade’ approach helps identify the specific pattern whereby earth manipulation results in erosion and sedimentation that combine to influence the organisms that live in streams," Burcher said.

"We would like to follow a particle from a parking lot to a stream, but we can’t do that so we allow path analysis to show us how the dominos are falling," said Valett. "A realistic goal is to try to figure out where you can prop up a domino or take one out to manage a situation to improve stream health."

Burcher said 10 watersheds provided a good representation of the range of what humans are doing to the landscape. He had to learn to use geographic information systems (GIS) and hydrologic modeling to observe land use at that scale, however. He used Landsat imagery in GIS to identify three land uses – agriculture, urban, and forested, within zones where water and sediments differentially moved or settled.

Burcher was back in his own field when it came to measuring responses. The lives and times of stream fish and insects were summarized by 13 metrics that indicated when a cascade of terrestrial events caused significant aquatic damage.

Land use can cause erosion, change bank height or steepness, change stream shape, water speed, deliver sediment to make for a muddy stream, or can change the chemistry or structure of the streambed. Bugs, such as stoneflies and mayflies, are signs of a healthy stream because they process energy and matter – that is, they eat leaves and then are eaten by fish. If the insect population becomes one that derives energy from algae, for instance, the balance changes.

"Total density of fish was one of the best models for stream health," Burcher said.

Valett, Burcher, and Benefield’s talk, "The Land Cover Cascade: Linking terrestrial and aquatic subsystems.," will be part of a special session at the GSA meeting organized by Virginia Tech geosciences professor Madeline Schreiber and Valett to present biology-geology approaches to studying the flowpaths that integrate terrestrial and aquatic ecosystems.

There will be presentations from several universities, including two more from Virginia Tech, at the session, which will be from 8 a.m. until noon on Oct. 16 in Salt Palace Convention Center room 251 C.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/research/streamteam/

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>