Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscientists follow arsenic from chicken feed to streambeds

13.10.2005


What happened to the chicken when she crossed the road is less important that what happens to what she eats when it is used as fertilizer.



Organic arsenic is fed to poultry to prevent bacterial infections and improve weight gain. A little bit of arsenic is taken up by the tissue and the majority of it is excreted in urine. Poultry litter -- the wood chips, feathers, droppings, and urine from under poultry houses -- is rich in nitrogen and phosphorous, so is a logical fertilizer. But what happens to that arsenic?

Virginia Tech geoscientists are determining what happens to such feed additives when they are part of the manure applied to agricultural fields. They will present their research at the Geological Society of America national meeting in Salt Lake City Oct. 16-19.


In research funded by the U.S. Department of Agriculture, Madeline Schreiber, associate professor of geosciences at Virginia Tech, carried out field and laboratory studies to discover the fate of arsenic fed to poultry. She and her graduate students found that bacteria in the litter and in shallow subsurface soil transform organic arsenic to inorganic arsenic. Organic arsenic is not highly toxic to humans, but inorganic arsenic, with its organic component removed, is toxic.

"We found that organic arsenic is highly soluble in water and is rapidly biotransformed to inorganic arsenic," Schreiber said. Despite laboratory findings that show a strong adsorption of inorganic arsenic to minerals in the soils and aquifer sediments, a surprising finding from water samples from streams receiving runoff is that low concentrations of arsenic are transported to streambeds instead of being retained by the aquifers, Schreiber said. "We think that the arsenic is adsorbed onto nanoscale particles that pass though our filters and through the soil column," said Schreiber. "This suggests that particle transport is an important mechanism in arsenic cycling in these watersheds."

Graduate student Mary Harvey is currently studying the adsorption potential for organic arsenic to iron oxides and clay minerals. Although much of the organic arsenic is biotransformed to inorganic arsenic before it reaches the aquifer, rapid flushing of organic arsenic in to the subsurface during storm events introduces organic arsenic to the subsurface; thus, understanding its adsorption is important.

Schreiber emphasized, "All of the arsenic concentrations we are finding at our field site are below the drinking water standards, even below the new standards of 10 parts per billion, which will come into effect in February 2006."

Schreiber is now collaborating with microbiologist John Stolz of Duquesne University, and expert on bacteria that transform arsenic. Schreiber and Stolz are looking at bacteria present in the litter and soil and the conditions under which biotransformation occurs.

Schreiber will deliver her paper, "Arsenic cycling in agricultural watersheds: The role of particles," at 3:10 p.m. at the Salt Palace Convention Center, room 250 DE. Harvey will present "Adsorption characteristics of roxarsone, an organoarsenic poultry feed additive," following Schreiber’s talk. Co-authors with Harvey are Schreiber and Professor Christopher Tadanier, Research Assistant Professor of Geological Sciences at Virginia Tech.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/hydro/ms/ms.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>