Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscientists follow arsenic from chicken feed to streambeds

13.10.2005


What happened to the chicken when she crossed the road is less important that what happens to what she eats when it is used as fertilizer.



Organic arsenic is fed to poultry to prevent bacterial infections and improve weight gain. A little bit of arsenic is taken up by the tissue and the majority of it is excreted in urine. Poultry litter -- the wood chips, feathers, droppings, and urine from under poultry houses -- is rich in nitrogen and phosphorous, so is a logical fertilizer. But what happens to that arsenic?

Virginia Tech geoscientists are determining what happens to such feed additives when they are part of the manure applied to agricultural fields. They will present their research at the Geological Society of America national meeting in Salt Lake City Oct. 16-19.


In research funded by the U.S. Department of Agriculture, Madeline Schreiber, associate professor of geosciences at Virginia Tech, carried out field and laboratory studies to discover the fate of arsenic fed to poultry. She and her graduate students found that bacteria in the litter and in shallow subsurface soil transform organic arsenic to inorganic arsenic. Organic arsenic is not highly toxic to humans, but inorganic arsenic, with its organic component removed, is toxic.

"We found that organic arsenic is highly soluble in water and is rapidly biotransformed to inorganic arsenic," Schreiber said. Despite laboratory findings that show a strong adsorption of inorganic arsenic to minerals in the soils and aquifer sediments, a surprising finding from water samples from streams receiving runoff is that low concentrations of arsenic are transported to streambeds instead of being retained by the aquifers, Schreiber said. "We think that the arsenic is adsorbed onto nanoscale particles that pass though our filters and through the soil column," said Schreiber. "This suggests that particle transport is an important mechanism in arsenic cycling in these watersheds."

Graduate student Mary Harvey is currently studying the adsorption potential for organic arsenic to iron oxides and clay minerals. Although much of the organic arsenic is biotransformed to inorganic arsenic before it reaches the aquifer, rapid flushing of organic arsenic in to the subsurface during storm events introduces organic arsenic to the subsurface; thus, understanding its adsorption is important.

Schreiber emphasized, "All of the arsenic concentrations we are finding at our field site are below the drinking water standards, even below the new standards of 10 parts per billion, which will come into effect in February 2006."

Schreiber is now collaborating with microbiologist John Stolz of Duquesne University, and expert on bacteria that transform arsenic. Schreiber and Stolz are looking at bacteria present in the litter and soil and the conditions under which biotransformation occurs.

Schreiber will deliver her paper, "Arsenic cycling in agricultural watersheds: The role of particles," at 3:10 p.m. at the Salt Palace Convention Center, room 250 DE. Harvey will present "Adsorption characteristics of roxarsone, an organoarsenic poultry feed additive," following Schreiber’s talk. Co-authors with Harvey are Schreiber and Professor Christopher Tadanier, Research Assistant Professor of Geological Sciences at Virginia Tech.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/hydro/ms/ms.html

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>