Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists use biotools to understand geosystems

13.10.2005


The goal: Control toxin mobility



If you have pathogenic bacteria in the groundwater, flowing through the soil, are those bacteria going to attach to a mineral surface or are they going to reach your well?

Virginia Tech researchers are looking at the mobility of bacteria and of heavy metals in surface and ground water. Geosciences professor Michael Hochella Jr. will present recent findings at the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19.


How do we understand when bacteria will stick? What are the sticking efficiencies of bacteria on minerals? If they are high, there is a good chance it will be bound by minerals. If they are low, the bacteria will bounce off. "That is a frequent theme with toxins," said Hochella. "How mobile are they? Will they stick on surfaces or transport through water or air? Mobility is not good.

"Geologists are now becoming microbiologists in order to discover how biosystems affect geosystems," he said. "We study bacteria and other microorganisms in sophisticated ways. Geoscience Ph.D. students take courses in microbiology and biochemistry and apply biotools to geosystems."

Ph.D. student Tracy (Cail) Bank did her dissertation research on the sticking efficiencies of Enterococcus faecalis bacteria, which causes opportunistic urinary tract infections and wound infections, and is becoming antibiotic resistant. "We also picked it for this research because it is spherical," Hochella said.

Bank attached a single bacterial cell as the tip of a cantilever in an atomic force microscope, lowered it to a mineral surface in water, and measured the exceptionally small approach and adhesion forces present. She used a mathematical model (the interaction force boundary layer model) to determine the sticking efficiencies. Thus, she has provided for the first time a direct measurement of how likely those cells are to stick to those surfaces.

She used a silica glass surface, which mimics quartz, the single most common mineral in the curst of the earth, and the principal mineral in sandstones. "Water flowing through sandstone is a common occurrence," Hochella said.

Bank altered the pH of the water and discovered significant differences in stickiness as a result. As the water went from neutral to slightly acidic, the sticking efficiencies increased dramatically.

Bank’s unique research with E. faecalis took several years. She now works at the environmental sciences division of Oak Ridge National Lab. "It is up to others to test other minerals," Hochella said.

He will also describe transmission electron microscope techniques used to study nanoparticles in surface water, groundwater, and drinking water and to determine the role of such particles in transporting heavy metals. Hochella discovered nanoparticles binding heavy metals in the course of his research on transport of such metals from the Clark Fork Superfund Complex in Montana.

The talk, "New insights into the identity, characteristics, and transport of small biotic and abiotic particles in the critical zone, by Hochella and Bank, will be presented at 9: 15 a.m. on Wednesday, Oct. 19, at the Salt Palace Convention Center room 251 AB. Virginia Tech faculty members and students will present more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/profs/mfh/mfh-r.html

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>