Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists use biotools to understand geosystems

13.10.2005


The goal: Control toxin mobility



If you have pathogenic bacteria in the groundwater, flowing through the soil, are those bacteria going to attach to a mineral surface or are they going to reach your well?

Virginia Tech researchers are looking at the mobility of bacteria and of heavy metals in surface and ground water. Geosciences professor Michael Hochella Jr. will present recent findings at the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19.


How do we understand when bacteria will stick? What are the sticking efficiencies of bacteria on minerals? If they are high, there is a good chance it will be bound by minerals. If they are low, the bacteria will bounce off. "That is a frequent theme with toxins," said Hochella. "How mobile are they? Will they stick on surfaces or transport through water or air? Mobility is not good.

"Geologists are now becoming microbiologists in order to discover how biosystems affect geosystems," he said. "We study bacteria and other microorganisms in sophisticated ways. Geoscience Ph.D. students take courses in microbiology and biochemistry and apply biotools to geosystems."

Ph.D. student Tracy (Cail) Bank did her dissertation research on the sticking efficiencies of Enterococcus faecalis bacteria, which causes opportunistic urinary tract infections and wound infections, and is becoming antibiotic resistant. "We also picked it for this research because it is spherical," Hochella said.

Bank attached a single bacterial cell as the tip of a cantilever in an atomic force microscope, lowered it to a mineral surface in water, and measured the exceptionally small approach and adhesion forces present. She used a mathematical model (the interaction force boundary layer model) to determine the sticking efficiencies. Thus, she has provided for the first time a direct measurement of how likely those cells are to stick to those surfaces.

She used a silica glass surface, which mimics quartz, the single most common mineral in the curst of the earth, and the principal mineral in sandstones. "Water flowing through sandstone is a common occurrence," Hochella said.

Bank altered the pH of the water and discovered significant differences in stickiness as a result. As the water went from neutral to slightly acidic, the sticking efficiencies increased dramatically.

Bank’s unique research with E. faecalis took several years. She now works at the environmental sciences division of Oak Ridge National Lab. "It is up to others to test other minerals," Hochella said.

He will also describe transmission electron microscope techniques used to study nanoparticles in surface water, groundwater, and drinking water and to determine the role of such particles in transporting heavy metals. Hochella discovered nanoparticles binding heavy metals in the course of his research on transport of such metals from the Clark Fork Superfund Complex in Montana.

The talk, "New insights into the identity, characteristics, and transport of small biotic and abiotic particles in the critical zone, by Hochella and Bank, will be presented at 9: 15 a.m. on Wednesday, Oct. 19, at the Salt Palace Convention Center room 251 AB. Virginia Tech faculty members and students will present more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/profs/mfh/mfh-r.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>