Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists use biotools to understand geosystems

13.10.2005


The goal: Control toxin mobility



If you have pathogenic bacteria in the groundwater, flowing through the soil, are those bacteria going to attach to a mineral surface or are they going to reach your well?

Virginia Tech researchers are looking at the mobility of bacteria and of heavy metals in surface and ground water. Geosciences professor Michael Hochella Jr. will present recent findings at the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19.


How do we understand when bacteria will stick? What are the sticking efficiencies of bacteria on minerals? If they are high, there is a good chance it will be bound by minerals. If they are low, the bacteria will bounce off. "That is a frequent theme with toxins," said Hochella. "How mobile are they? Will they stick on surfaces or transport through water or air? Mobility is not good.

"Geologists are now becoming microbiologists in order to discover how biosystems affect geosystems," he said. "We study bacteria and other microorganisms in sophisticated ways. Geoscience Ph.D. students take courses in microbiology and biochemistry and apply biotools to geosystems."

Ph.D. student Tracy (Cail) Bank did her dissertation research on the sticking efficiencies of Enterococcus faecalis bacteria, which causes opportunistic urinary tract infections and wound infections, and is becoming antibiotic resistant. "We also picked it for this research because it is spherical," Hochella said.

Bank attached a single bacterial cell as the tip of a cantilever in an atomic force microscope, lowered it to a mineral surface in water, and measured the exceptionally small approach and adhesion forces present. She used a mathematical model (the interaction force boundary layer model) to determine the sticking efficiencies. Thus, she has provided for the first time a direct measurement of how likely those cells are to stick to those surfaces.

She used a silica glass surface, which mimics quartz, the single most common mineral in the curst of the earth, and the principal mineral in sandstones. "Water flowing through sandstone is a common occurrence," Hochella said.

Bank altered the pH of the water and discovered significant differences in stickiness as a result. As the water went from neutral to slightly acidic, the sticking efficiencies increased dramatically.

Bank’s unique research with E. faecalis took several years. She now works at the environmental sciences division of Oak Ridge National Lab. "It is up to others to test other minerals," Hochella said.

He will also describe transmission electron microscope techniques used to study nanoparticles in surface water, groundwater, and drinking water and to determine the role of such particles in transporting heavy metals. Hochella discovered nanoparticles binding heavy metals in the course of his research on transport of such metals from the Clark Fork Superfund Complex in Montana.

The talk, "New insights into the identity, characteristics, and transport of small biotic and abiotic particles in the critical zone, by Hochella and Bank, will be presented at 9: 15 a.m. on Wednesday, Oct. 19, at the Salt Palace Convention Center room 251 AB. Virginia Tech faculty members and students will present more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/profs/mfh/mfh-r.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>