Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tropics play a more active role than was thought in controlling the Earth’s climate

12.10.2005


One million years ago a change in the tropics made the northern hemisphere ice masses expand



Researchers from the Universitat Autònoma de Barcelona and Durham University (UK) have discovered that a million years ago, global climate changes occurred due to changes in tropical circulation in the Pacific similar to those caused by El Niño today. Changes in atmospheric circulation caused variations in heat fluxes and moisture transport, triggering a large expansion of the polar ice sheets and a reorganisation of the Earth’s climate. The discovery, published in Geology, shows that local climate changes in the tropics can create more global climate changes, and emphasises the hypothesis that the tropics play a more active role than was thought in controlling the Earth’s climate.

The planet enters and leaves glacial periods approximately every 100,000 years. However, a million years ago these cycles lasted only 40,000 years. Scientists have reconstructed the chain of climatic events that brought about a change in the frequency of glacial periods and that occurred alongside changes in sea temperatures in the Pacific Ocean and alongside significant changes to tropical climates. The researchers have worked mainly with data obtained from the remains of marine organisms that have accumulated over time in the tropical Pacific. These fossil records show that approximately 1.2 million years ago, the difference in sea temperatures between the East and West Pacific began changing gradually over the course of 400,000 years. In the equatorial regions surrounding Central America, the sea cooled; while around Indonesia, sea temperatures barely changed. This caused changes in atmospheric circulation, creating what is now known as the Walker circulation.


According to the researchers, these changes to tropical atmospheric circulation caused a change in heat fluxes and moisture transport to the polar regions. This brought about an increase in snowfall, enabling the ice sheets, particularly in the northern hemisphere, to expand and change in the frequency of glacial periods from 40,000 to 100,000 years. Until now this expansion was thought to have been influenced only by the ice sheets themselves and by the ocean currents and the atmospheric circulation at high altitude in the northern hemisphere, as well as by CO2 levels in the atmosphere. "Our results show that local climatic changes in the tropics can produce global changes," stated Antoni Rosell of the UAB, one of the authors of the research. "We are seeing that the tropics play a more active role than was thought in controlling the Earth’s climate".

The two researchers, Antoni Rosell, a researcher of the Catalan Institute for Research and Advanced Studies (ICREA) for the UAB Institute of Environmental Science and Technology, and Erin L. McClymont, of Durham University (UK), currently at the University of Bristol, have published these results in Geology, the most important scientific journal in this field.

The uneven rhythm of the Earth’s cooling process

The Earth has been passing through a cooling period for several million years. The process is not one of gradual, continuous cooling, but rather one of sporadic stops and starts. Professor Rosell’s previous article, published in Nature, looked at one of these transitions. This transition was significant because it resulted in the cooling of large parts of the northern hemisphere, especially North America. The latest article looks at another one of these transitions, this time in the more recent past and on a global scale. This transition is very important in climatology, as it coincides with a change in the frequency of glacial periods, the reasons for which are not fully understood. Although it was a change in the North Pacific that caused the northern hemisphere permafrost 2.7 million years ago, in the more recent case 1 million years ago, the origin of the permafrost was at the tropics.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>