Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The tropics play a more active role than was thought in controlling the Earth’s climate


Researchers from the Universitat Autònoma de Barcelona and Durham University (UK) have discovered that a million years ago, global climate changes occurred due to changes in tropical circulation in the Pacific similar to those caused by El Niño today. Changes in atmospheric circulation caused variations in heat fluxes and moisture transport, triggering a large expansion of the polar ice sheets and a reorganisation of the Earth’s climate. The discovery, published in Geology, shows that local climate changes in the tropics can create more global climate changes, and emphasises the hypothesis that the tropics play a more active role than was thought in controlling the Earth’s climate.

The planet enters and leaves glacial periods approximately every 100,000 years. However, a million years ago these cycles lasted only 40,000 years. Scientists have reconstructed the chain of climatic events that brought about a change in the frequency of glacial periods and that occurred alongside changes in sea temperatures in the Pacific Ocean and alongside significant changes to tropical climates. The researchers have worked mainly with data obtained from the remains of marine organisms that have accumulated over time in the tropical Pacific. These fossil records show that approximately 1.2 million years ago, the difference in sea temperatures between the East and West Pacific began changing gradually over the course of 400,000 years. In the equatorial regions surrounding Central America, the sea cooled; while around Indonesia, sea temperatures barely changed. This caused changes in atmospheric circulation, creating what is now known as the Walker circulation.

According to the researchers, these changes to tropical atmospheric circulation caused a change in heat fluxes and moisture transport to the polar regions. This brought about an increase in snowfall, enabling the ice sheets, particularly in the northern hemisphere, to expand and change in the frequency of glacial periods from 40,000 to 100,000 years. Until now this expansion was thought to have been influenced only by the ice sheets themselves and by the ocean currents and the atmospheric circulation at high altitude in the northern hemisphere, as well as by CO2 levels in the atmosphere. “Our results show that local climatic changes in the tropics can produce global changes,” stated Antoni Rosell of the UAB, one of the authors of the research. “We are seeing that the tropics play a more active role than was thought in controlling the Earth’s climate”.

The two researchers, Antoni Rosell, a researcher of the Catalan Institute for Research and Advanced Studies (ICREA) for the UAB Institute of Environmental Science and Technology, and Erin L. McClymont, of Durham University (UK), currently at the University of Bristol, have published these results in Geology, the most important scientific journal in this field.

The uneven rhythm of the Earth’s cooling process

The Earth has been passing through a cooling period for several million years. The process is not one of gradual, continuous cooling, but rather one of sporadic stops and starts. Professor Rosell’s previous article, published in Nature, looked at one of these transitions. This transition was significant because it resulted in the cooling of large parts of the northern hemisphere, especially North America. The latest article looks at another one of these transitions, this time in the more recent past and on a global scale. This transition is very important in climatology, as it coincides with a change in the frequency of glacial periods, the reasons for which are not fully understood. Although it was a change in the North Pacific that caused the northern hemisphere permafrost 2.7 million years ago, in the more recent case 1 million years ago, the origin of the permafrost was at the tropics.

Octavi López Coronado | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>