Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Probing the Depths: Hebrew University, Swiss Researchers Analyze the Liquid That Lies Beneath the Surface


While we generally think of water in nature as a cool liquid that we can see -- streams, lakes, oceans -- there is a great deal of “hot fluid” activity taking place far out of sight, deep within the earth, that influences what ultimately takes place on the surface, including the amount of rainfall and the buildup of new land mass.

Illustration shows the layers of the earth’s subsurface.

What exactly is the nature of that hidden fluid deep beneath the surface and what changes does it undergo as it seeks an ever-deeper venue?

Answer to these questions can be found in article in a recent issue of the journal Nature by Dr. Ronit Kessel of the Hebrew University’s Institute of Earth Sciences and her collaborators Prof. Max Schmidt, Prof. Peter Ulmer and Dr. Thomas Pettke from the Swiss Federal Institute of Technology, Zurich. In the article, the researchers report on a unique study in which fluids released from submerging earth plates at depths of 120-180 kilometers and temperatures between 700 and 1200 degrees centigrade are characterized for the first time.

Although the earth is principally a solid planet, water plays a major role in its evolution and differentiation. The presence of fluid affects the depth, temperature and composition of the melting that takes place deep within the bowels of the earth.

The surface of the earth is broken into large plates which move one relative to the other. When two plates collide, one plate can push the other downwards towards the center, carrying water deep into the mantle, which is the area between the earth’s crust and its core. As water enters the interior of the earth, it passes through water-rich (hydrous) minerals in the rock.

These hydrous minerals break down at depths of 50 to 200 kilometers, facilitating melting and ultimately leading to the super-heated volcanic zone. It is volcanic eruptions which regenerate our continental lithosphere (crust). Such volcanoes created, for example, the Aegean islands in southern Greece (the most famous of them is Santorini, which erupted in the 16th century B.C.E.), the “ring of fire” around the Pacific Ocean, and more.

These volcanoes eject many gases, for example carbon dioxide, to the atmosphere. These gases lead to thickening of the clouds and rain. As a result, water carried down to the interior of the earth influence precipitation on the surface. In addition, water at depth dissolves significant amounts of matter. The mobility of the water at depths also results in recycling other elements (including elements of economic value, such as chromium, nickel and vanadium) from place to place.

In order to characterize the fluids participating in every stage of the downward water cycle, the Hebrew University and Swiss researchers developed a novel experimental and analytical laboratory technique by which the composition of a fluid phase can be directly analyzed following high pressure and temperature experiments. Their work focused on determining how much water is stored in the down-going earth plate, how much dissolved matter it contains, and when these fluids are released from the plate and transferred to the mantle.

The results indicate that up to 180 kilometers deep, two kinds of fluids exist. One, at higher levels, is a fluid rich in water (70-90%) with only a little dissolved matter in it. This fluid exists at relatively low temperatures. The second component is a thick “hydrous melt,” rich in dissolved matter, which contains only 10-30% water. This component is a result of melting of the hydrous rocks at high temperature.

In their studies, the researchers found that different minerals display varying “preferences” for solubility, depending on the temperature at various depth levels.

Beyond a depth of 180 kilometers, only one kind of fluid exists, which is called supercritical liquid. A supercritical liquid is defined as a component which smoothly changes its character from fluid-like to a more solid, melt-like state, but is neither.

The researchers stress that it is essential to distinguish between melts, fluids and supercritical liquids in order to achieve a better understanding of the relationship between the down-going plate and volcanic eruptions and how matter is transferred in the earth interior.

Jerry Barach | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>