Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the Depths: Hebrew University, Swiss Researchers Analyze the Liquid That Lies Beneath the Surface

12.10.2005


While we generally think of water in nature as a cool liquid that we can see -- streams, lakes, oceans -- there is a great deal of “hot fluid” activity taking place far out of sight, deep within the earth, that influences what ultimately takes place on the surface, including the amount of rainfall and the buildup of new land mass.


Illustration shows the layers of the earth’s subsurface.



What exactly is the nature of that hidden fluid deep beneath the surface and what changes does it undergo as it seeks an ever-deeper venue?

Answer to these questions can be found in article in a recent issue of the journal Nature by Dr. Ronit Kessel of the Hebrew University’s Institute of Earth Sciences and her collaborators Prof. Max Schmidt, Prof. Peter Ulmer and Dr. Thomas Pettke from the Swiss Federal Institute of Technology, Zurich. In the article, the researchers report on a unique study in which fluids released from submerging earth plates at depths of 120-180 kilometers and temperatures between 700 and 1200 degrees centigrade are characterized for the first time.


Although the earth is principally a solid planet, water plays a major role in its evolution and differentiation. The presence of fluid affects the depth, temperature and composition of the melting that takes place deep within the bowels of the earth.

The surface of the earth is broken into large plates which move one relative to the other. When two plates collide, one plate can push the other downwards towards the center, carrying water deep into the mantle, which is the area between the earth’s crust and its core. As water enters the interior of the earth, it passes through water-rich (hydrous) minerals in the rock.

These hydrous minerals break down at depths of 50 to 200 kilometers, facilitating melting and ultimately leading to the super-heated volcanic zone. It is volcanic eruptions which regenerate our continental lithosphere (crust). Such volcanoes created, for example, the Aegean islands in southern Greece (the most famous of them is Santorini, which erupted in the 16th century B.C.E.), the “ring of fire” around the Pacific Ocean, and more.

These volcanoes eject many gases, for example carbon dioxide, to the atmosphere. These gases lead to thickening of the clouds and rain. As a result, water carried down to the interior of the earth influence precipitation on the surface. In addition, water at depth dissolves significant amounts of matter. The mobility of the water at depths also results in recycling other elements (including elements of economic value, such as chromium, nickel and vanadium) from place to place.

In order to characterize the fluids participating in every stage of the downward water cycle, the Hebrew University and Swiss researchers developed a novel experimental and analytical laboratory technique by which the composition of a fluid phase can be directly analyzed following high pressure and temperature experiments. Their work focused on determining how much water is stored in the down-going earth plate, how much dissolved matter it contains, and when these fluids are released from the plate and transferred to the mantle.

The results indicate that up to 180 kilometers deep, two kinds of fluids exist. One, at higher levels, is a fluid rich in water (70-90%) with only a little dissolved matter in it. This fluid exists at relatively low temperatures. The second component is a thick “hydrous melt,” rich in dissolved matter, which contains only 10-30% water. This component is a result of melting of the hydrous rocks at high temperature.

In their studies, the researchers found that different minerals display varying “preferences” for solubility, depending on the temperature at various depth levels.

Beyond a depth of 180 kilometers, only one kind of fluid exists, which is called supercritical liquid. A supercritical liquid is defined as a component which smoothly changes its character from fluid-like to a more solid, melt-like state, but is neither.

The researchers stress that it is essential to distinguish between melts, fluids and supercritical liquids in order to achieve a better understanding of the relationship between the down-going plate and volcanic eruptions and how matter is transferred in the earth interior.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>