Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Probing the Depths: Hebrew University, Swiss Researchers Analyze the Liquid That Lies Beneath the Surface


While we generally think of water in nature as a cool liquid that we can see -- streams, lakes, oceans -- there is a great deal of “hot fluid” activity taking place far out of sight, deep within the earth, that influences what ultimately takes place on the surface, including the amount of rainfall and the buildup of new land mass.

Illustration shows the layers of the earth’s subsurface.

What exactly is the nature of that hidden fluid deep beneath the surface and what changes does it undergo as it seeks an ever-deeper venue?

Answer to these questions can be found in article in a recent issue of the journal Nature by Dr. Ronit Kessel of the Hebrew University’s Institute of Earth Sciences and her collaborators Prof. Max Schmidt, Prof. Peter Ulmer and Dr. Thomas Pettke from the Swiss Federal Institute of Technology, Zurich. In the article, the researchers report on a unique study in which fluids released from submerging earth plates at depths of 120-180 kilometers and temperatures between 700 and 1200 degrees centigrade are characterized for the first time.

Although the earth is principally a solid planet, water plays a major role in its evolution and differentiation. The presence of fluid affects the depth, temperature and composition of the melting that takes place deep within the bowels of the earth.

The surface of the earth is broken into large plates which move one relative to the other. When two plates collide, one plate can push the other downwards towards the center, carrying water deep into the mantle, which is the area between the earth’s crust and its core. As water enters the interior of the earth, it passes through water-rich (hydrous) minerals in the rock.

These hydrous minerals break down at depths of 50 to 200 kilometers, facilitating melting and ultimately leading to the super-heated volcanic zone. It is volcanic eruptions which regenerate our continental lithosphere (crust). Such volcanoes created, for example, the Aegean islands in southern Greece (the most famous of them is Santorini, which erupted in the 16th century B.C.E.), the “ring of fire” around the Pacific Ocean, and more.

These volcanoes eject many gases, for example carbon dioxide, to the atmosphere. These gases lead to thickening of the clouds and rain. As a result, water carried down to the interior of the earth influence precipitation on the surface. In addition, water at depth dissolves significant amounts of matter. The mobility of the water at depths also results in recycling other elements (including elements of economic value, such as chromium, nickel and vanadium) from place to place.

In order to characterize the fluids participating in every stage of the downward water cycle, the Hebrew University and Swiss researchers developed a novel experimental and analytical laboratory technique by which the composition of a fluid phase can be directly analyzed following high pressure and temperature experiments. Their work focused on determining how much water is stored in the down-going earth plate, how much dissolved matter it contains, and when these fluids are released from the plate and transferred to the mantle.

The results indicate that up to 180 kilometers deep, two kinds of fluids exist. One, at higher levels, is a fluid rich in water (70-90%) with only a little dissolved matter in it. This fluid exists at relatively low temperatures. The second component is a thick “hydrous melt,” rich in dissolved matter, which contains only 10-30% water. This component is a result of melting of the hydrous rocks at high temperature.

In their studies, the researchers found that different minerals display varying “preferences” for solubility, depending on the temperature at various depth levels.

Beyond a depth of 180 kilometers, only one kind of fluid exists, which is called supercritical liquid. A supercritical liquid is defined as a component which smoothly changes its character from fluid-like to a more solid, melt-like state, but is neither.

The researchers stress that it is essential to distinguish between melts, fluids and supercritical liquids in order to achieve a better understanding of the relationship between the down-going plate and volcanic eruptions and how matter is transferred in the earth interior.

Jerry Barach | alfa
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>