Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indian eddies supply Atlantic Ocean with warm water

11.10.2005


Water from the Indian Ocean does not reach the South Atlantic Ocean continuously, but in separate packages. These are called Agulhas eddies, after the current along the east coast of Southern Africa where they originate from. Dutch researcher Astrid van Veldhoven characterised the fate of these rapidly rotating, three hundred kilometre wide and five kilometres deep, warm eddies during their journey to the Atlantic Ocean.



Over the past four years, the Royal Netherlands Institute for Sea Research (NIOZ) on Texel, in partnership with Utrecht University and the University of Cape Town, has carried out a large NWO-funded project into the Agulhas eddies, which transport seawater from the Indian Ocean to the South Atlantic Ocean. During this project the NIOZ research vessel ’Pelagia’ and the University of Cape Town’s research vessel ’Agulhas’ were remotely navigated by the Utrecht researchers, who interpreted satellite images from behind their computers. Satellite images revealed that the warm Agulhas eddies rose up as small hills above the Atlantic Ocean with a maximum height of about one metre.

Moreover, Van Veldhoven visited the eddies on three occasions onboard the research vessel. The Agulhas eddies turned out to be large warm rings of water from the Indian Ocean with a diameter of about 300 kilometres within which the water sometimes rotated at a speed of more than 3.6 kilometres per hour in an anticlockwise direction. To everyone’s surprise the eddy was found to stretch from the ocean surface right down to the ocean floor at a depth of some five kilometres; it therefore has a volume of about 350,000 cubic kilometres.


On the ocean surface, young eddies are at most 5 degrees Celsius warmer than the surrounding Atlantic Ocean. Due to their enormous volume, the eddies import considerable quantities of heat into the Atlantic Ocean.

Van Veldhoven carried out a detailed study of how these enormous eddies transformed, rotated increasingly slowly, and as a result of this gradually released their heat and salt into the surrounding cold Atlantic Ocean and into the atmosphere. The eddies only completely subside when they are halfway to South America.

The knowledge acquired from this research will be used to improve computer models of the global ocean circulation. Such models are necessary for improved predictions of climate change and the degree of global warming due to the greenhouse effect.

Astrid van Veldhoven’s research was funded by NWO.

Dr Astrid van Veldhoven | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6GMGCA_Eng

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>