Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North Sea efficient sink for carbon dioxide

11.10.2005


A relatively large number of algae grow in the North Sea. These form the basis for a much richer food chain than that found in the Atlantic Ocean. Dutch-sponsored researcher Yann Bozec calculated that coastal seas such as the North Sea remove about three times as much carbon dioxide from the atmosphere than would be expected on the basis of their small surface area.



The measured annual increase in the concentration of carbon dioxide (CO2) in the atmosphere is only 60 percent of the annual emissions from fossil fuels. The other 40 percent is absorbed by the seas and oceans. Yann Bozec investigated how the North Sea fulfils this task.

Up until now, little was known about the concentrations and transport cycle of CO2 in the North Sea. This lack of data was rectified with four expeditions, each of one-month duration, with the oceanographic research vessel ’Pelagia’ from the Royal Netherlands Institute for Sea Research (NIOZ). Per expedition the researchers made a vertical water profile at 97 locations. Travelling between locations they also measured the levels of CO2, nutrients (phosphate, nitrogen and silicate), and the amount of algal growth. This resulted in the most extensive and accurate data set ever for a coastal sea.


Bozec used these data to calculate how much carbon dioxide the North Sea absorbs from the atmosphere each year and then stores in the deep North Atlantic Ocean. This storage capacity was found to be almost three times as high as the average for all of the world’s seas. When the data over the entire North Sea were pooled, this gave an annual net uptake of carbon dioxide of no less than 8.5 million tonnes of carbon per year. If this performance is theoretically extrapolated to all of the world’s coastal seas - of which the North Sea constitutes just 2 percent - then these would together account for about 20 percent of the carbon dioxide uptake for all of world’s seas, even though they only account for 7 percent of the sea surface. Therefore coastal seas absorb CO2 far more efficiently than open oceans.

Seawater can absorb carbon dioxide in two different ways. The ’physical pump’ works as a result of the CO2 concentration in the atmosphere being higher than that in the seawater. As nature always tries to restore the balance, carbon dioxide flows from the atmosphere into the surface of the seawater. In the winter, the surface water in the cold polar seas cools down and becomes slightly heavier. As a result of this it sinks under its own weight into the deep sea.

The second way is by algae fixing carbon dioxide under the influence of sunlight (photosynthesis). This mechanism is important in the North Sea. Algae grow in the surface water and form their cell material by assimilating carbon dioxide from the seawater. This reduces the carbon dioxide concentration in the seawater thereby allowing more carbon dioxide to be absorbed from the atmosphere. The algae are further assimilated in the entire food web. As a result of this water that flows out of the North Sea is much richer in organisms (and carbon-containing waste products from these) than the inflowing, blue oceanic water.

Yann Bozec’s research was funded by NWO.

Dr Yann Bozec | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6GMG9Z_Eng

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>