Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


North Sea efficient sink for carbon dioxide


A relatively large number of algae grow in the North Sea. These form the basis for a much richer food chain than that found in the Atlantic Ocean. Dutch-sponsored researcher Yann Bozec calculated that coastal seas such as the North Sea remove about three times as much carbon dioxide from the atmosphere than would be expected on the basis of their small surface area.

The measured annual increase in the concentration of carbon dioxide (CO2) in the atmosphere is only 60 percent of the annual emissions from fossil fuels. The other 40 percent is absorbed by the seas and oceans. Yann Bozec investigated how the North Sea fulfils this task.

Up until now, little was known about the concentrations and transport cycle of CO2 in the North Sea. This lack of data was rectified with four expeditions, each of one-month duration, with the oceanographic research vessel ’Pelagia’ from the Royal Netherlands Institute for Sea Research (NIOZ). Per expedition the researchers made a vertical water profile at 97 locations. Travelling between locations they also measured the levels of CO2, nutrients (phosphate, nitrogen and silicate), and the amount of algal growth. This resulted in the most extensive and accurate data set ever for a coastal sea.

Bozec used these data to calculate how much carbon dioxide the North Sea absorbs from the atmosphere each year and then stores in the deep North Atlantic Ocean. This storage capacity was found to be almost three times as high as the average for all of the world’s seas. When the data over the entire North Sea were pooled, this gave an annual net uptake of carbon dioxide of no less than 8.5 million tonnes of carbon per year. If this performance is theoretically extrapolated to all of the world’s coastal seas - of which the North Sea constitutes just 2 percent - then these would together account for about 20 percent of the carbon dioxide uptake for all of world’s seas, even though they only account for 7 percent of the sea surface. Therefore coastal seas absorb CO2 far more efficiently than open oceans.

Seawater can absorb carbon dioxide in two different ways. The ’physical pump’ works as a result of the CO2 concentration in the atmosphere being higher than that in the seawater. As nature always tries to restore the balance, carbon dioxide flows from the atmosphere into the surface of the seawater. In the winter, the surface water in the cold polar seas cools down and becomes slightly heavier. As a result of this it sinks under its own weight into the deep sea.

The second way is by algae fixing carbon dioxide under the influence of sunlight (photosynthesis). This mechanism is important in the North Sea. Algae grow in the surface water and form their cell material by assimilating carbon dioxide from the seawater. This reduces the carbon dioxide concentration in the seawater thereby allowing more carbon dioxide to be absorbed from the atmosphere. The algae are further assimilated in the entire food web. As a result of this water that flows out of the North Sea is much richer in organisms (and carbon-containing waste products from these) than the inflowing, blue oceanic water.

Yann Bozec’s research was funded by NWO.

Dr Yann Bozec | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>