Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IODP Tahiti sea level expedition gets underway

10.10.2005


Scientists from nine nations have set sail for the Integrated Ocean Drilling Program (IODP) Tahiti Sea Level Expedition, a research expedition initiated to investigate global sea level rise since the last glacial maximum, approximately 23,000 years ago. For six weeks, aboard the DP HUNTER, the expedition science party will work on the most extensive geological research investigation ever undertaken in a coral reef area. Off the coast of Tahiti, IODP scientists will take samples of fossil corals from the ocean seafloor to analyze the environmental records that are inside them. Scientists expect the coral reefs to yield records on changes in sea surface temperature during the circumscribed period and information on climatic anomalies, including El Niño/Southern Oscillation events.

Through this research expedition, IODP scientists aim to learn more about the timing and course of past global sea level changes to better understand present and future sea level rise due to global greenhouse conditions. Since the climax of the last ice age, global sea level has risen by about 120 meters, primarily because of the melting of large inland ice sheets and thermal expansion of the global body of ocean waterattributable to rising temperatures.

According to IODP scientists, Tahiti is well situated for these investigations because the island is located in a tectonically stable region. Consequently, changes in sea level here can be related solely to global effects. Because the corals off Tahiti have strict ecological requirements and are extremely sensitive to environmental changes, both natural and human-induced, they are accurate, sensitive recorders of past sea level and climatic change.



The science party will analyze fossil, i.e. dead corals, because they form archives that help decipher the long-term behavior of the tropical ocean-atmosphere system and how it has responded to manmade and natural impacts. Live corals will not be cored, nor analyzed.

Because corals live in a sufficiently narrow depth range, they can be used as absolute sea level indicators. Corals can be considered chronometers as they can absolutely date by radiometric methods, methods so accurate that even in the oldest coral rocks to be studied, scientists will be able to accurately determine the age of corals to within 50 years.

Expedition co-chief scientist Yasufumi Iryu of Japan’s Tohoku University says, “We are very excited about being able to understand these past environmental changes in such detail for the first time.”

French co-chief scientist Gilbert Camoin of the CEREGE Institute adds, “Understanding the rate at which sea level and environments have changed is vital to understanding the effects that human activity now have on Earth’s environment.”

At the conclusion of the expedition, the fossil coral core material will be shipped to an IODP core repository located at the University of Bremen, Germany. In mid-February 2006, IODP scientists will gather again in Bremen to further analyze the fossil corals and associated reef rocks in greater detail.

ESO, the ECORD (European Consortium for Ocean Research Drilling) Science Operator, is managing the Tahiti Sea Level Expedition on behalf of IODP. Coordinated by the British Geological Survey, ESO includes the University of Bremen and the European Petrophysics Consortium (Universities of Leicester, Montpellier, Aachen and Amsterdam). In addition to ECORD funding, ESO is supported by IODP, in part, with commingled funds from the U.S. National Science Foundation and Japan’s Ministry of Education, Culture, Science, and Technology. See www.ecord.org for more information.

The Integrated Ocean Drilling Program (IODP) is an international marine research program dedicated to advancing scientific understanding of the Earth by monitoring and sampling subseafloor environments. Through multiple platforms, IODP scientists explore the program’s principal themes: the deep biosphere, climate change, and Earth processes. Mission-specific drilling platforms are operated by the ECORD Science Operator (ESO), one of three IODP Implementing Organizations. Two othersin Japan and in the United Statesconduct riser-equipped and riserless drilling operations, respectively. IODP’s initial 10-year, $1.5 billion program is supported by two lead agencies, the U.S. National Science Foundation and Japan’s Ministry of Education, Culture, Sports, Science, and Technology. ECORD and the People’s Republic of China Ministry of Science and Technology give additional support.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org
http://www.ecord.org

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>