Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat tracking Africa’s rivers and lakes to help manage water resources

06.10.2005


From this week, researchers worldwide can follow the flow of rivers and height of lakes across the African continent from the comfort of their desks. A new web-based demonstration launched to coincide with this week’s TIGER Workshop makes Envisat-derived altimetry data for African inland water freely available in near-real time.



Envisat’s Radar Altimeter-2 (RA-2) sensor fires around 1800 radar pulses a second down to the surface of the Earth, then measures very precisely how long it takes for those pulses to bounce back. This travel time can be used to calculate the height of the Earth’s oceans, ice masses, land surfaces, and also – thanks to a sophisticated algorithm developed by the UK’s De Montfort University (DMU) in Leicester under ESA contract – previously elusive results for rivers and lakes flowing over land.

The effort to develop the River and Lake product was led by Professor Philippa Berry of DMU’s Earth and Planetary Remote Sensing Laboratory: "Monitoring of water resources is vital over Africa, to enable best use of this precious commodity. Until now reliable information has been difficult to access because of the high cost in equipment, manpower and communications, and because it is difficult to obtain these precious hydrological data from many countries.


"However heights of inland water can now be measured directly from space using radar altimeters, currently carried on several satellites and originally designed to measure ocean height. This is a very exciting development which has the potential to transform the management of drought crises and water-related conflict around the world.

"Whilst data from a few selected large lakes has been available previously, the combination of DMU’s sophisticated processing scheme and the unique design of the Envisat altimeter have for the first time allowed near-real time measurements to be made over lakes and major rivers across Africa.

"The new system identified that part of each surface echo originating from inland water, enabling measurement of much smaller targets than has previously been possible. This, combined with the altimeter’s capability to return good data even in rough terrain, means that we can provide much more accurate and up-to-date water level information than has ever been possible before."

The demonstration website is being launched at this week’s ESA TIGER Workshop at ESRIN, the European Centre for Earth Observation in Frascati in Rome. Starting 3 October, this four-day event involves more than 200 African organisations from 31 countries, and aims to apply Earth Observation technologies in support of integrated water resource management.

"The information will be released using a web-based delivery service hosted at ESRIN," Berry added. "It will be available within three days of being measured by Envisat. The system may even be pushed further to deliver water levels in less than six hours, using near-real time data from the precise orbit determination system aboard the satellite known as DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), in order to better satisfy the actual needs of users."

Following the TIGER Workshop the River and Lake demonstration system – which will start off by featuring products for Canada as well as Africa – will switch to other regions of the Earth on a periodic basis, beginning with Latin America.

Jerome Benveniste | alfa
Further information:
http://www.esa.int/esaEO/SEMM7B5Y3EE_index_0.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>