Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth sinks three inches under weight of flooded Amazon


As the Amazon River floods every year, a sizeable portion of South America sinks several inches because of the extra weight – and then rises again as the waters recede, a study has found.

This annual rise and fall of earth’s crust is the largest ever detected, and it may one day help scientists tally the total amount of water on Earth.

“What would you do if you knew how much water was on the planet?” asked Douglas Alsdorf, assistant professor of geological sciences at Ohio State University. “That’s a really exciting question, because nobody knows for sure how much water there is.”

Having an estimate of Earth’s entire fresh water cache – from hidden groundwater, to the world’s rivers and wetlands, to mountaintop glaciers – would greatly improve our ability to predict drought, flooding and climate change.

The study appears in the journal Geophysical Research Letters.

The study began in 2004 after Michael Bevis, now an Ohio Eminent Scholar and professor of civil and environmental engineering and geodetic science at Ohio State, detected an up-and-down motion at a global positioning system (GPS) station he’d placed in the ground near a lake in the Andes. He concluded that as the water level in the lake rose and fell, the ground nearby moved in response. At the time, he was a professor at the University of Hawaii.

Bevis began to look for similar oscillations in data recorded by other GPS stations around South America. Other scientists had already reported detecting such changes up to half an inch in other parts of the globe, but they suspected that the greatest motion would occur beneath the Amazon River Basin, the largest river system in the world. In late 2004, one group used satellite data to predict that the bedrock beneath the Amazon would rise and fall about one inch every year.

But when Bevis looked at the data from a GPS station in Manaus, Brazil – near the center of the river basin – he saw not a one-inch change, but three inches.

He recruited Alsdorf to help him couple his data to a computer model of water flow through the basin. They used a very simple approach colloquially called a “bathtub model,” which assumed that the water level rose and fell uniformly across the Amazon, like running water in a bathtub.

They used a simple model because scientists know relatively little about the Amazon River Basin, Alsdorf explained. Its sheer size – approximately equal to the continental United States, with a flood area the size of Texas – hinders detailed study.

Like many researchers, they suspect that the amount of water that flows through the Amazon into the Atlantic Ocean every year is about ten times larger than that carried by the Mississippi River into the Gulf of Mexico.

“The old joke is, we know the discharge of the Amazon, give or take the Mississippi,” Alsdorf said.

With colleagues in the United States and Brazil, Bevis and Alsdorf merged the water model and the GPS data to show that between 1995 and 2003 the bedrock around Manaus rose and fell in a regular pattern that coincided with the basin’s annual flood. The bedrock sank slowly as the floodwaters gathered, then rose back up as the waters receded. The average change in height was about three inches.

Alsdorf was quick to point out caveats of the study. The researchers have data for only one GPS station, and the “bathtub model” is greatly simplified compared to the natural variability in water level throughout the Amazon. What’s more, scientists aren’t exactly sure of the composition of the bedrock beneath the basin.

Despite the uncertainties of the study, the three-inch oscillation is the most dramatic measured to date, and it’s the first known recording of a land mass oscillating in response to the flow of a river.

It also raises the possibility that scientists could one day calculate the amount of water in the Amazon – that is, they could “weigh” the river system based on how much it makes the earth sink.

Similar techniques could be used to calculate the amount water on the planet, but much more data would be needed from all over the globe, Alsdorf said.

As a first step, he and his colleagues want to install more GPS stations around Manaus and the rest of the Amazon to see if the sinking varies by location. He suspects that similar effects could also be detected in the Congo River system in Africa.

But to monitor water flow worldwide would require a satellite, and Alsdorf leads the American portion of an international team that is proposing a new satellite to do just that. The Water Elevation Recovery (WatER) mission would use radar to measure global water levels every eight days.

Data from WatER would give scientists a better estimate of fresh water storage and river discharge, and improve models of the global water cycle and climate change, he said.

Coauthors on the Geophysical Research Letters paper included Eric Kendrick, senior research associate in the Department of Civil and Environmental Engineering and Geodetic Science at Ohio State; Luiz Paulo Fortes of the Institute Brasilieiro de Geographia e Estatística in Brazil; Bruce Forsberg of the Instituto Nacional de Pesquisas da Amazonas in Brazil; Robert Smalley Jr. of the University of Memphis; and Janet Becker of the University of Hawaii.

Douglas Alsdorf | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>