Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gulf warm-water eddies intensify hurricane changes


A possible culprit? Gulf’s "Loop Current"

Scientists monitoring ocean heat and circulation in the Gulf of Mexico during Hurricanes Katrina and Rita have a new understanding of how these tropical storms can gain intensity so quickly: The Gulf of Mexico’s "Loop Current" is likely intensifying hurricanes that pass over eddies of warm water that spin off the main current.

"A positive outcome of a hurricane season like this is that we’ve been able to learn more about the Loop Current and its associated warm-water eddies, which are basically hurricane intensity engines," said Nick Shay, a University of Miami Rosenstiel School of Marine and Atmospheric Science (RSMAS) meteorologist and physical oceanographer.

The Loop Current is a horseshoe-shaped feature that flows clockwise, transferring warm subtropical waters from the Caribbean Sea through the Yucatan Straits into the Gulf of Mexico.

This year, the Loop Current extended deep into the Gulf of Mexico during hurricane season. Currents at this time of year typically become unsteady and pinch off deep, warm eddies, said Shay. The warm water then becomes ideal for hurricanes in the process of intensifying.

"Scientists have known that hurricanes form above the world’s warmest ocean surface waters," said Jay Fein, program director in the National Science Foundation (NSF)’s Division of Atmospheric Sciences, which funded the research. "This study adds new information about hurricanes’ journeys to landfall, and will help to better predict their paths and intensity changes during their final hours over open water."

After Hurricane Katrina and a week before Hurricane Rita, Shay, Peter Black from the NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Eric Uhlhorn of the University of Miami/NOAA Cooperative Institute for Marine and Atmospheric Science, deployed Airborne Expendable Conductivity, Temperature and Depth profilers (AXCTDs); Current Profilers (AXCPs); and Bathythermographs (AXBTs) to obtain information on water temperature to depths of up to 3,300 feet (1,000 meters).

The AXCTDs and AXCPs, which were funded by NSF, are dropped from aircraft and measure salinity and currents.

Meteorologists are learning a great deal as hurricanes pass over the deep, warm waters of the Loop Current, Shay said. "We have long been aware that these currents are an important way for the ocean to distribute heat and energy, but until now, we just didn’t have much data on the role they played in building hurricane intensity."

Two days before Hurricane Rita, Black and Rick Lumpkin of AOML, and Peter Niiler of the Scripps Institution of Oceanography, deployed surface drifters that measure surface and subsurface thermal conditions while traveling clockwise around a Loop Current warm eddy just south of La. The eddy was lying in the path of Rita.

"This represents one of the most comprehensive ocean-data sets where two major hurricanes passed through the same region," said Frank Marks, director of NOAA’s Hurricane Research Division. "This series of observations is a testament to how new ocean observations are helping us understand hurricane intensity changes."

"The last time there was a season with two Category 5 hurricanes in the same basin was in 1961 with Carla and Hattie," said Shay. "However, the same phenomenon occurred the year before in 1960 with Donna and Ethel."

Hurricanes Katrina and Rita also have much in common with Hurricane Opal, a category 4 storm that occurred a decade ago, on Oct. 4. During Opal, meteorologists first recognized the pivotal role that deep, warm eddies play in quickly building hurricane intensity. Opal encountered a warm- water eddy in the Gulf of Mexico and strengthened in intensity from Category 1 to Category 4 in just 14 hours.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>