Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Continue to See Decline In Arctic Sea Ice In 2005

30.09.2005


Researchers from NASA, the National Snow and Ice Data Center and others using satellite data have detected a significant loss in Arctic sea ice this year.



On Sept. 21, 2005, sea ice extent dropped to 2.05 million sq. miles, the lowest extent yet recorded in the satellite record. Incorporating the 2005 minimum using satellite data going back to 1978, with a projection for ice growth in the last few days of this September, brings the estimated decline in Arctic sea ice to 8.5 percent per decade over the 27 year satellite record.

Scientists involved in this research are from NASA’s Goddard Space Flight Center, Greenbelt, Md., NASA’s Jet Propulsion Laboratory, Pasadena, Calif., the National Snow and Ice Data Center at the University of Colorado, Boulder, and the University of Washington, Seattle.


Satellites have made continual observations of Arctic sea ice extent since 1978, recording a general decline throughout that period. Since 2002, satellite records have revealed early onsets of springtime melting in the areas north of Alaska and Siberia. In addition, the 2004-2005 winter season showed a smaller recovery of sea ice extent than any previous winter in the satellite record and the earliest onset of melt throughout the Arctic.

Arctic sea ice typically reaches its minimum in September, at the end of the summer melt season. The last four Septembers (2002-2005) have seen sea ice extents 20 percent below the mean September sea ice extent for 1979-2000.

Perennial ice cover is ice that survives the summer melt, consisting mainly of thick multiyear ice floes that are the mainstay of the Arctic sea ice cover. "Since 1979, by using passive microwave satellite data, we’ve seen that the area of Arctic perennial sea ice cover has been declining at 9.8 percent per decade," said Joey Comiso, senior scientist at Goddard.

For the perennial ice to recover, sustained cooling is needed, especially during the summer period. This has not been the case over the past 20 years, as the satellite data show a warming trend in the Arctic, and it is not expected to be the case in the future, as climate models project continued Arctic warming. If ice were to grow back in these areas, the new ice would likely be thinner and more susceptible to future melt than the thick perennial ice that it replaces.

Scientists are working to understand the extent to which these decreases in sea ice are due to naturally occurring climate variability or longer-term human influenced climate changes.

Scientists believe that the Arctic Oscillation, a major atmospheric circulation pattern that can push sea ice out of the Arctic, may have contributed to the reduction of sea ice in the mid-1990s by making the sea ice more vulnerable to summertime melt.

Sea ice decline could also affect future temperatures in the region. Ice reflects much of the sun’s radiation back into space. As sea ice melts, more exposed ocean water reduces the amount of energy reflected away from the Earth. "Feedbacks in the system are starting to take hold," says the National Snow and Ice Data Center’s lead scientist Ted Scambos.

Claire Parkinson, senior scientist at Goddard, cautions against thinking that Arctic sea ice is gone for good, especially with such limited data. "The reduced sea ice coverage will lead to more wintertime heat loss from the ocean to the atmosphere and perhaps therefore to colder water temperatures and further ice growth," said Parkinson.

There are many factors beyond warmer temperatures that drive changes in the Arctic. A longer data record, combined with observations from additional environmental parameters now available from NASA satellites, will help scientists better understand the changes they are now seeing.

The study used data from the Defense Meteorological Satellite Program Special Sensor/ Microwave Imager and data from NASA’s Scanning Multi-channel Microwave Radiometer (SMMR) on the NIMBUS-7 satellite.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/arcticice_decline.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>