Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellites Continue to See Decline In Arctic Sea Ice In 2005


Researchers from NASA, the National Snow and Ice Data Center and others using satellite data have detected a significant loss in Arctic sea ice this year.

On Sept. 21, 2005, sea ice extent dropped to 2.05 million sq. miles, the lowest extent yet recorded in the satellite record. Incorporating the 2005 minimum using satellite data going back to 1978, with a projection for ice growth in the last few days of this September, brings the estimated decline in Arctic sea ice to 8.5 percent per decade over the 27 year satellite record.

Scientists involved in this research are from NASA’s Goddard Space Flight Center, Greenbelt, Md., NASA’s Jet Propulsion Laboratory, Pasadena, Calif., the National Snow and Ice Data Center at the University of Colorado, Boulder, and the University of Washington, Seattle.

Satellites have made continual observations of Arctic sea ice extent since 1978, recording a general decline throughout that period. Since 2002, satellite records have revealed early onsets of springtime melting in the areas north of Alaska and Siberia. In addition, the 2004-2005 winter season showed a smaller recovery of sea ice extent than any previous winter in the satellite record and the earliest onset of melt throughout the Arctic.

Arctic sea ice typically reaches its minimum in September, at the end of the summer melt season. The last four Septembers (2002-2005) have seen sea ice extents 20 percent below the mean September sea ice extent for 1979-2000.

Perennial ice cover is ice that survives the summer melt, consisting mainly of thick multiyear ice floes that are the mainstay of the Arctic sea ice cover. "Since 1979, by using passive microwave satellite data, we’ve seen that the area of Arctic perennial sea ice cover has been declining at 9.8 percent per decade," said Joey Comiso, senior scientist at Goddard.

For the perennial ice to recover, sustained cooling is needed, especially during the summer period. This has not been the case over the past 20 years, as the satellite data show a warming trend in the Arctic, and it is not expected to be the case in the future, as climate models project continued Arctic warming. If ice were to grow back in these areas, the new ice would likely be thinner and more susceptible to future melt than the thick perennial ice that it replaces.

Scientists are working to understand the extent to which these decreases in sea ice are due to naturally occurring climate variability or longer-term human influenced climate changes.

Scientists believe that the Arctic Oscillation, a major atmospheric circulation pattern that can push sea ice out of the Arctic, may have contributed to the reduction of sea ice in the mid-1990s by making the sea ice more vulnerable to summertime melt.

Sea ice decline could also affect future temperatures in the region. Ice reflects much of the sun’s radiation back into space. As sea ice melts, more exposed ocean water reduces the amount of energy reflected away from the Earth. "Feedbacks in the system are starting to take hold," says the National Snow and Ice Data Center’s lead scientist Ted Scambos.

Claire Parkinson, senior scientist at Goddard, cautions against thinking that Arctic sea ice is gone for good, especially with such limited data. "The reduced sea ice coverage will lead to more wintertime heat loss from the ocean to the atmosphere and perhaps therefore to colder water temperatures and further ice growth," said Parkinson.

There are many factors beyond warmer temperatures that drive changes in the Arctic. A longer data record, combined with observations from additional environmental parameters now available from NASA satellites, will help scientists better understand the changes they are now seeing.

The study used data from the Defense Meteorological Satellite Program Special Sensor/ Microwave Imager and data from NASA’s Scanning Multi-channel Microwave Radiometer (SMMR) on the NIMBUS-7 satellite.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>