Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transition Metal Selenites (Mn, Co, Ni, Fe, Cu, Zn and Cd)


The work involved a multidisciplinary task, undertaking the study of phases of mineralogical and physico-chemical interest. Selenites were synthesised, given that they are a new field and likely to present original physical properties. Their study was carried out using crystallographic methods and the behaviour of their physical properties was investigated.

As a result of this research, twenty-four selenites of different transition metals were synthesised. These were grouped as a function of the conditions of the pressure and the temperature employed in their synthesis, differentiating three blocks of eight phases each. New polymorphs obtained were: Mn(SeO3).H2O(A,B), in low pressure and temperature conditions, Mn3(SeO3)3.H2O and Mn4(SeO3)4.H2O phases in moderate pressure and temperature conditions, and Mn(SeO3)(A,B) polymorphs in high pressure and temperature conditions.

The aims were, apart from obtaining new selenites, the undertaking of a structural analysis by means of X-ray diffraction in monocrystalline and in polycrystalline samples. The studies carried out enabled the elucidation of the crystallographical parameters for each phase. The X-ray diffraction diagrams for the polycrystalline sample showed a significant absence of impurities. Finally, the structures of twenty-four phases, obtaining the link distances, the distortion and the equilibrium of the loads of the units present, were investigated.

Studies were undertaken of thermal properties (thermogravimetric and thermodiffractometric), spectroscopic properties (infrared, diffuse reflectance, luminescence and Mössbauer) and magnetic properties (magnetic susceptibility and electronic paramagnetic resonance) of the selenites obtained.

The thermogravimetric and thermodiffractometric analyses show an initial loss of the water molecules and the posterior decomposition of all phases. After elimination of selenium in the form of SeO2(g), the formation of simple oxides of the metals present in the initial structures takes place.

The analyses of the infrared spectra of the selenites show the characteristic bands for the (SeO3)2- selenite groups, in the interval of frequencies from 1000 to 400 cm-1. The diffuse reflectance spectra present the characteristic bands of cations, in all case obtaining a certain degree of covalency. Manganese compounds show luminescence phenomena at temperatures of liquid He. The emission and excitation spectra present bands belonging to manganese(II) ions in high-spin octahedric environments.

Magnetic measurements indicate the presence of predominantly antiferromagnetic interactions, with a part of the samples showing ferromagnetic phenomena at low temperatures. One of the synthesised phases, selenite with the Cu2O(SeO3) formula, present global ferromagnetic behaviour.

Irati Kortabitarte | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>