Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lands surface change on Alaska tundra creating longer, warmer summers in Arctic

23.09.2005


A gradual lengthening of the snow-free season in Alaska’s tundra, and a corresponding northward progression of the growth of shrubs and trees, may be creating a cycle of warmer and longer summers in the Alaskan Arctic according to a new study to be published in the Sept. 22, 2005, issue of Science Express.



The resulting atmospheric heating in the region of northern Alaska is equivalent to what might be observed if there was a doubling of carbon dioxide in the atmosphere. Continuation of this trend could further amplify atmospheric heating in the region by two to seven times and could possibly contribute to broader changes in climate.

"We suggest that a noticeable summer warming trend in Alaska is best explained by a lengthening of the snow-free season there," said Howard E. Epstein, an associate professor of environmental sciences at the University of Virginia and a co-author of the new study. The scientists determined that the increasing summer temperatures in northern Alaska could not be attributed to regional atmospheric circulation patterns or to a reduction in sea ice in the summer or to an increase in cloud cover. The observed summer temperature increases are likely related to a global warming trend that has led to a longer snow-free season and an increase in the extent of woody vegetation. Both of these changes increase the amount of solar radiation that goes into heating rather than being reflected back to the atmosphere.


Epstein said that since the early 1960s the spring thaw in Alaska’s tundra country is arriving an average of 2.3 days earlier each decade. As a result, plants in the region now "leaf out" about 2.7 days earlier than in previous decades. Likewise, the first freeze each year is arriving slightly later, allowing plants to extend their growing season. The longer growing season is allowing shrubs and trees to slowly migrate northward. The increasing woody vegetation is further warming the near-surface atmosphere by absorbing rather than reflecting incoming solar radiation.

"The vegetation change is pretty dramatic," Epstein said. "The tundra is getting greener, and there is a noticeable increase in shrubs. This is observable from satellite data and by observations on the ground. Native American people in the region and nearby areas also have noted the changes in weather and vegetation."

Because there is a shorter period of snow on the ground, solar radiation is absorbed by the land surface more readily and contributes to heating, thus accelerating the melting of snow and allowing for more plant growth. Over time, as the permafrost begins to melt, ancient organic matter that has been frozen for thousands of years is exposed, potentially adding more carbon dioxide to the atmosphere.

The result is a positive feedback loop that could continue to raise temperatures in the region and further lengthen the snow-free period each year.

Since the early 1960s, scientists have identified "hotspots" of slowly increasing average summer temperatures in the Arctic, from 0.15 degrees Celsius to about 2 degrees Celsius for an average increase of 1.2 degrees Celsius in the summertime.

"We know that certain parts of the Arctic are warming pretty substantially and more so than in other regions around the globe," Epstein said. "This is significant because conditions in the Arctic affect global atmosphere conditions. The Arctic is dominated by snow and ice, and if this condition were to change, even subtly, there is potential for further change to the global climate."

Howard Epstein | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>