Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lands surface change on Alaska tundra creating longer, warmer summers in Arctic


A gradual lengthening of the snow-free season in Alaska’s tundra, and a corresponding northward progression of the growth of shrubs and trees, may be creating a cycle of warmer and longer summers in the Alaskan Arctic according to a new study to be published in the Sept. 22, 2005, issue of Science Express.

The resulting atmospheric heating in the region of northern Alaska is equivalent to what might be observed if there was a doubling of carbon dioxide in the atmosphere. Continuation of this trend could further amplify atmospheric heating in the region by two to seven times and could possibly contribute to broader changes in climate.

"We suggest that a noticeable summer warming trend in Alaska is best explained by a lengthening of the snow-free season there," said Howard E. Epstein, an associate professor of environmental sciences at the University of Virginia and a co-author of the new study. The scientists determined that the increasing summer temperatures in northern Alaska could not be attributed to regional atmospheric circulation patterns or to a reduction in sea ice in the summer or to an increase in cloud cover. The observed summer temperature increases are likely related to a global warming trend that has led to a longer snow-free season and an increase in the extent of woody vegetation. Both of these changes increase the amount of solar radiation that goes into heating rather than being reflected back to the atmosphere.

Epstein said that since the early 1960s the spring thaw in Alaska’s tundra country is arriving an average of 2.3 days earlier each decade. As a result, plants in the region now "leaf out" about 2.7 days earlier than in previous decades. Likewise, the first freeze each year is arriving slightly later, allowing plants to extend their growing season. The longer growing season is allowing shrubs and trees to slowly migrate northward. The increasing woody vegetation is further warming the near-surface atmosphere by absorbing rather than reflecting incoming solar radiation.

"The vegetation change is pretty dramatic," Epstein said. "The tundra is getting greener, and there is a noticeable increase in shrubs. This is observable from satellite data and by observations on the ground. Native American people in the region and nearby areas also have noted the changes in weather and vegetation."

Because there is a shorter period of snow on the ground, solar radiation is absorbed by the land surface more readily and contributes to heating, thus accelerating the melting of snow and allowing for more plant growth. Over time, as the permafrost begins to melt, ancient organic matter that has been frozen for thousands of years is exposed, potentially adding more carbon dioxide to the atmosphere.

The result is a positive feedback loop that could continue to raise temperatures in the region and further lengthen the snow-free period each year.

Since the early 1960s, scientists have identified "hotspots" of slowly increasing average summer temperatures in the Arctic, from 0.15 degrees Celsius to about 2 degrees Celsius for an average increase of 1.2 degrees Celsius in the summertime.

"We know that certain parts of the Arctic are warming pretty substantially and more so than in other regions around the globe," Epstein said. "This is significant because conditions in the Arctic affect global atmosphere conditions. The Arctic is dominated by snow and ice, and if this condition were to change, even subtly, there is potential for further change to the global climate."

Howard Epstein | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>