Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar explorer delivers rare snow-depth data to ESA for CryoSat validation

23.09.2005


The CryoSat validation programme took another important step forward on Wednesday with the official handover of a unique set of data that had been collected by the intrepid Dutch Polar Explorer Marc Cornelissen on behalf of ESA during his recent expedition to the North Pole.



In March this year, Marc Cornelissen left Cape Arctichesky in northern Russia to lead the Pole Track 2005 expedition on a 1,000 km ski trek to the geographic North Pole. Along the way, the expedition team deployed mobile weather stations to transmit meteorological data, and collected a valuable set of snow depth measurements following a protocol that had been developed with ESA.

"While snow depth information holds the key to producing accurate maps of ice-thickness change over time with CryoSat, there are surprisingly few of these basic measurements readily available," says Malcolm Davidson, ESA CryoSat Validation Manager. "As a rule, people don’t spontaneously spend weeks on end on the ice measuring this parameter. Marc Cornelissen’s careful measurements of snow thickness during his expedition are thus very valuable indeed. The data will now be analysed by scientists participating in ESA’s CryoSat calibration and validation programme."


In the long run, the data collected during the Pole Track expedition will contribute to the extensive validation program accompanying the CryoSat mission. The aim of this program is to collect independent measurements on the ground and from aircraft to fully understand and characterise the geophysical uncertainties in the CryoSat products. The data collected during the Pole Track expedition will be used, for instance, to estimate how much snow on top of sea ice affects the retrieval of sea-ice thickness information. Other large-scale campaigns have taken place in different locations across the Arctic over the last two years and have addressed different validation questions. Through the validation activities, CryoSat is expected to produce global maps of ice thickness change with unprecedented accuracy.

The planned 1,000 km expedition was unfortunately cut short when the Pole Track logistics provider was denied permission to build their base camp near the North Pole. Nevertheless, Marc and his fellow explorers Petter Nyquist from Norway and Doug Stoup from the USA did manage to collect around 300 km worth of snow thickness readings before abandoning the expedition.

However, the frustration of the logistical issues forcing the trek to be abandoned would seem less important compared to when Marc came face to face with a huge male polar bear on the verge of attack. Fortunately, Petter was able to shoot his gun to scare the bear away and Marc escaped with his life, albeit shaken by his close encounter with death. This experience certainly brings home the dangers that researchers and explores alike face when out in the field in the name of science and climate research. In an interview with Marc, he recounts some of his experiences and expresses his concern about climate change:

What were the biggest challenges you faced with this particular expedition?

Besides the collapse of our logistical support that forced us to abandon the mission, polar bears turned out to be a big challenge. A healthy population of persistent bears live near Cape Arctichesky. On three occasions we had to explain to a polar bear that it had to go.

Despite the expedition being cut short, how much data did you manage to collect for CryoSat validation purposes?

In the end we only did 300 km out of the 1000 km that was planned. We were out for three weeks, almost every day we made snow thickness readings. Every evening after pitching the tent, we picked a straight line through the terrain that evenly featured the elements specific to the location. The line would usually cover thin ice, pressure ridges and a vast patch of solid ice. Each line was 400 to 500 metres long and we made a snow thickness reading every few meters. We punched our snow probe through the snow cover until it touched ice. We would read out the thickness, shouting out the depth to the team member writing it down. The third man kept an eye out for polar bears and carried our gun.

How difficult was it to take the measurements?

Although the protocol for collecting snow thickness data is pretty straight forward, it was more demanding than I had anticipated. In the cold days of March with temperatures as low as -37° C it was a challenge to pitch the tent and tempting to go in straight away and light up the stove. Writing down the readings sometimes seemed a little sadomasochistic. Holding a pencil with your mittens while you fingers are completely numb is not a pleasant experience to say the least. But Petter and Doug, my teammates were very committed. We only skipped the procedure a couple times when frostbite started to set in.

CryoSat aims to determine rates of diminishing ice cover, but as a frequent visitor to the Arctic over the last 10 years, what changes to the ice have you personally noticed?

What I seem to have noticed is that there are more frequent but smaller leads (stretches of open water, sometimes covered with very fresh ice). This year we had a lot of ’water skies’ around us, which is a haze of steam indicating open water. Despite the low temperatures and even light winds, full moon induced currents ripped everything open. Pressure ridges also occur very frequently but are by far not as extreme as I recall from my expedition in 1997. During any expedition we expect to swim across those small leads in our dry-suits. Sometimes the fresh leads worked in our favour serving as a highway when they were headed north.

How worried are you about receding ice cover?

We have seen a long period where prevailing winds and sea currents wipe away the sea ice and the ice itself seems to be thinning. It is a dangerous combination where natural variations in the regime of mechanical forces on the ice coincide with thermal forcing amplified by global warming. With steadily increasing emissions of greenhouse gasses we are dangerously interfering with a delicate system. And that’s the technocratic way of putting it. To me it is not a system – it is nature. And that is something we should not mess about with. So yes, I am worried.

How important a role do you think space missions such as CryoSat play in understanding a changing Earth?

I think it’s crucial. The Earth has been, and will always be changing. It’s an intrinsic part of nature. But it is our responsibility to be in constant touch with our planet and take responsibility for how we interact with the Earth and make the appropriate decisions.

Do you have plans to lead any future expeditions to the polar regions and if so would you be interested in contributing again to the CryoSat validation effort?

I am currently focusing on the Climate Change College, which offers a select group of young adults the chance to contribute to worldwide and national climate change campaigns for the World Wide Fund for Nature. However, together with ESA’s CryoSat Validation Manager Malcolm Davidson we are working out how I can further contribute to the CryoSat validation programme in Greenland. A realistic protocol will be developed in the coming months and part of the plan is to visit other scientists in the field working on the EGIG (Expédition Glaciologique Internationale Groenland) - Line, which runs across Greenland’s central ice sheet. It was first traversed in 1959 and has been a site for various scientific surveys since.

Malcolm Davidson | alfa
Further information:
http://www.esa.int/SPECIALS/Cryosat/SEMPZW7X9DE_0.html

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>