Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer methane burps caused massive global warming

15.09.2005


Researchers have uncovered new evidence of a sudden, fatal dose of global warming 180 million years ago during the time of the dinosaurs. The scientists’ findings, published in Nature, 14 September, could provide vital clues about the climate change we are experiencing today.



PhD student Dave Kemp, funded by the Natural Environment Research Council, and supervisors Drs. Angela Coe and Anthony Cohen from the Open University Department of Earth Sciences, along with Dr. Lorenz Schwark of the University of Cologne, discovered evidence suggesting that vast amounts of methane gas were released to the atmosphere in three massive ‘methane burps’ or pulses. The addition of methane, a greenhouse gas, to the atmosphere had a severe impact on the environment, warming Earth about 10°C, and resulting in the extinction of a large number of species on land and in the oceans.

Dr Angela Coe says: “We’ve known about this event for a few years through earlier work by our team and others, but there’s been a great deal of uncertainty about its precise size, duration, and underlying cause. What our present study shows is that this methane release was not just one event, but 3 consecutive pulses that occurred within a 60,000 year interval. Importantly, our data demonstrate that each individual pulse was very rapid. Also, whilst the methane release was very quick, we’ve found that the recovery took much longer, occurring over a few hundred thousand years.”


The methane came from gas hydrate, a frozen mixture of water and methane found in huge quantities on the seabed. This hydrate suddenly melted, allowing the methane to escape. The OU researchers based their findings on geochemical analyses of mudrocks that are preserved along the Yorkshire coast near Whitby, UK, and date from the Jurassic Period of geological time.

Dave Kemp says: “The methane was released because slight wobbles in the Earth’s orbit periodically bring our planet closer to the Sun, warming the oceans sufficiently to melt the vast reserves of hydrate. We believe that this effect was compounded by volcanic emissions of other greenhouse gases. After the methane was released into the atmosphere from the seabed it reacted rapidly with oxygen to form carbon dioxide. Carbon dioxide is also a powerful greenhouse gas that persists in the atmosphere for many hundreds of years, and it was this gas which caused such a massive global warming effect”.

Dr Anthony Cohen adds: “One of the most important aspects of the study is that it provides an accurate timescale for how the Earth, and life, reacted to a sudden increase in atmospheric carbon dioxide. Today we are releasing large amounts of carbon dioxide to the atmosphere, primarily through the burning of fossil fuels. It is possible that the rate at which carbon dioxide is being added to the atmosphere now actually outstrips the rate at which it was added 180 million years ago. Given that the effects were so devastating then, it is extremely important to understand the details of past events in order to better comprehend present-day climate change. With this information, we are better informed about what action needs to be taken to mitigate or avoid some of the potential detrimental future effects.

Owen Gaffney | alfa
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>