Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate researchers meet to simulate flight operations for storm cloud experiment

13.09.2005


Summertime in northern Australia means monsoon storms -- and plenty of them. Tall, turbulent clouds associated with these storm systems form rapidly, release their energy in the form of rain, then tail away, leaving in their wake a surplus of moisture to feed the next system. This lifecycle--the formation of tropical convective clouds, their outflow into cirrus clouds, and eventual dissipation into water vapor--is a key component of tropical climate. However, the cloud properties and the extent of their impact on the environment are not well understood or well represented in computer models that are used to simulate climate change.

This week, a team of more than 25 international cloud climate scientists are conducting a three-day operations and planning simulation at Sandia National Laboratories in Livermore, California, to prepare for a complex experiment that will result in the most detailed data sets ever collected for tropical convection. Led by scientists from the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology (BOM), the Tropical Warm Pool International Cloud Experiment will take place in the region around Darwin, Australia, between January and February 2006.

Darwin is home to one of the ARM Program’s permanent research sites, equipped with a sophisticated array of remote sensing instruments to collect the continuous measurements needed to improve computer models that simulate clouds and climate. The upcoming experiment will include an unprecedented network of ground-based instrumentation, a ship operating off the coast near Darwin, and a fleet of low-, middle- and high-altitude aircraft for in-situ and remote-sensing measurements. Aircraft measurements taken during the experiment will be valuable for validating and improving existing ground-based measurements from the ARM site in Darwin, as well as satellite observations obtained by the National Aeronautics and Space Administration (NASA).



The operational complexity, not to mention the monsoon environment, makes the experiment a challenging undertaking, to say the least.

"After more than two years of planning for this experiment, we are nearing the operations phase," said Jim Mather, ARM’s lead scientist for the experiment. The most challenging aspect of our operations will be coordinating multiple research aircraft during the complex monsoon season. Because our time in the field is so limited, this simulation exercise allows us to examine all aspects of the critical flight coordination process."

Each day of the simulation will involve weather briefings and mission planning to reflect actual field operations and flight scenarios during the experiment. The team is conducting a debriefing and critique at the end of each day to discuss any issues and identify needed changes to their planned situation analysis, decision processes, communications protocols, and procedure development.

In addition to the ARM Program and BOM, other key participants in the experiment include the ARM Unmanned Aerospace Vehicle (ARM-UAV) Program, the Australian Commonwealth Scientific and Industrial Research Organization, NASA, and Airborne Research Australia. In addition, scientists from several universities in the United States, Australia, Canada, Japan, and the United Kingdom are participating in the experiment. Both the Royal Australian Air Force and the Regional BOM Office will host the aircraft operations and be heavily involved in forecasting efforts.

"This is truly an international collaboration focused on climate change research," said Wanda Ferrell, ARM Program Manager for the Department of Energy’s Office of Science. "When we agreed to fund the experiment, we were hopeful it would gain wide support. The number of collaborators has exceeded expectations, and the scientific commitment to the experiment is impressive. We are very optimistic about the progress made thus far, and are already looking forward to the results."

ARM scientists will use data from the experiment to improve computer models that simulate tropical climate by examining convective cloud systems from their initial stages through to the decay of the cirrus generated, and to measure their impact on the environment. Other scientific collaborators in the experiment will focus on measuring a variety of active chemical species transported by convection into the upper troposphere and lower stratosphere. These measurements will provide important information about the interaction of the troposphere and stratosphere and about chemical processes associated with ozone production and destruction.

Mike Janes | EurekAlert!
Further information:
http://www.sandia.gov
http://www.arm.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>