Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane gyrations last 2,000 years show human influnece on atmosphere

09.09.2005


Humans have been tinkering with greenhouse gas levels in Earth’s atmosphere for at least 2,000 years and probably longer, according to a surprising new study of methane trapped in Antarctic ice cores conducted by an international research team.



The study showed wild gyrations of methane from biomass burning from about 1 A.D. to present, said Dominic Ferretti, lead study author and a University of Colorado at Boulder researcher with a joint appointment at the National Institute of Water and Atmospheric Research, or NIWA in Wellington, New Zealand. Scientists had expected to see slowly increasing concentrations of methane, a major greenhouse gas produced primarily by burning and anaerobic activity from agriculture, livestock and natural sources, up until the onset of the Industrial Revolution in the late 1700s, he said.

For the first time, researchers were able to separate "pyrogenic" and anaerobic methane sources using a stable-isotope analysis of the ice cores, said James White of CU-Boulder’s Institute of Arctic and Alpine Research and study co-author. They found methane emissions from burning dropped about 40 percent from 1000 to 1700, likely due in large part to decreased landscape burning by indigenous populations in the Americas devastated by diseases brought to the New World by European explorers.


Undertaken by a team from CU-Boulder, NIWA, Australia’s Commonwealth Scientific and Industrial Research Organization, or CSIRO, Australia’s Department of the Environment and Heritage and the National Oceanic and Atmospheric Administration, the study was published in the Sept. 9 issue of Science.

"The results frankly were a shock," said White. "We can see human fingerprints all over atmospheric methane emissions for at least the last 2,000 years. Humans have been an integral part of Earth’s carbon cycle for much longer than we thought."

The researchers recorded a huge drop in methane levels from biomass burning from 1500 to 1600, when anthropologists say indigenous humans in South and Central America -- who had been expanding in population and range -- declined by 90 percent. Since most forests in Europe and China had been mostly cleared for agricultural or habitable lands by 1 A.D., "the seemingly small indigenous populations of the Americas would have had a disproportionate influence on anthropogenic methane emissions from fires," the researchers wrote in Science.

The study is important because methane increases have had the second highest impact on climate change over the past 250 years behind carbon dioxide, accounting for about 20 percent of the warming from all greenhouse gas increases, White said. Methane is more powerful than carbon dioxide in slowing the release of radiated heat away from Earth, he said.

About 60 percent of atmospheric methane is generated from human-related activities, according to the International Panel on Climate Change. Methane increases in the past 200 years are due to increased burning of grasslands, forests and wood fuels, more intense livestock activity and rice cultivation and gas leaked from fossil fuel production and waste management. In addition, natural sources of methane include wetlands, termites and wildfires.

Overall methane levels in the atmosphere increased about 2 percent from about 1 A.D. to 1000 and decreased by 2 percent from 1000 to 1700, according to the study. Since the 1700s, the levels have increased by nearly 300 percent, said White.

Surprisingly, the study showed the amount of methane produced from burning was about the same 1,000 years ago as it is today, said White. "There has been a naïve idea out there that humans were just passive, pastoral passengers on the planet up until just a few hundred years ago," he said. "We have shown that is not the case."

The study also suggests that natural climate change has played a role in changing methane levels in the atmosphere, at least on a regional level, White said. During the Medieval Warm Period from about 1000 to 1270, there appears to have been a slight increase in biomass burning in Europe. In cooler periods like the Little Ice Age from roughly 1300 to 1850, biomass burning in the Northern Hemisphere appears to have decreased somewhat while anaerobic activity by bacteria in bogs and swamps probably increased, he said.

Involving the United States, New Zealand and Australia, the international project focused on ice cores from Antarctica’s Law Dome, White said. "We could not have undertaken this study without all three countries," he said. "These types of projects are not cheap, and each group brought a unique line of expertise."

White said the team hopes to look at methane levels going back prior to 2,000 years ago. "The larger question is when humans began influencing the climate and nutrient system," he said. "We are in an unusually long interglacial period right now, and another interesting but unresolved question is whether humans, without forethought, have inadvertently kept Earth out of the next ice age by altering its energy budget."

James White | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>